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Abstract Current models propose that the plasma membrane of animal cells is com-
posed of heterogeneous and dynamic microdomains known variously as cytoskeletal
corrals, lipid rafts and protein islands. Much of the experimental evidence for these
membrane compartments is indirect. Recently, live cell single particle tracking stud-
ies using quantum dot-labeled IgE bound to its high affinity receptor FcεRI, provided
direct evidence for the confinement of receptors within micrometer-scale cytoskeletal
corrals.

In this study, we show that an innovative time-series analysis of single particle
tracking data for the high affinity IgE receptor, FcεRI, on mast cells provides substan-
tial quantitative information about the submicrometer organization of the membrane.
The analysis focuses on the probability distribution function of the lengths of the
jumps in the positions of the quantum dots labeling individual IgE FcεRI complexes
between frames in movies of their motion. Our results demonstrate the presence,
within the micrometer-scale cytoskeletal corrals, of smaller subdomains that provide
an additional level of receptor confinement. There is no characteristic size for these
subdomains; their size varies smoothly from a few tens of nanometers to a over a
hundred nanometers.
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In QD-IGE labeled unstimulated cells, jumps of less than 70 nm predominate over
longer jumps. Addition of multivalent antigen to crosslink the QD-IgE-FcεRI com-
plexes causes a rapid slowing of receptor motion followed by a long tail of mostly
jumps less than 70 nm. The reduced receptor mobility likely reflects both the mem-
brane heterogeneity revealed by the confined motion of the monomeric receptor com-
plexes and the antigen-induced cross linking of these complexes into dimers and
higher oligomers. In both cases, the probability distribution of the jump lengths is
well fit, from 10 nm to over 100 nm, by a novel power law. The fit for short jumps
suggests that the motion of the quantum dots can be modeled as diffusion in a fractal
space of dimension less than two.

Keywords Live cell · IgE-FcεRI · Microdomains · Cytoskeletal corrals · Single
particle tracking · Quantum dots · Time series · Jump sizes · Standard deviation of
jumps · Time-dependent diffusion coefficient

1 Introduction

Some of the most compelling experimental evidence for the heterogeneous organi-
zation of cell membranes has come from experiments in which individual mem-
brane proteins were tagged with an opaque or fluorescent probe and the probe’s
motion was followed over periods ranging from seconds to tens of minutes. Such
single particle tracking (SPT) experiments, where the particles are the probes,
are typically analyzed using mean squared displacement (MSD) and the motion
is classified by the diffusion coefficient derived from the displacements. These
analyses have revealed a range of possible behaviors for membrane proteins, in-
cluding free diffusion, restricted or confined diffusion (when probes move within
corrals or microdomains), directed movement (when receptors appear to inter-
act with cytoskeletal tethers) and immobility (Andrews et al. 2008; Saxton 1997;
Saxton and Jacobson 1997; Lippincott-Schwartz et al. 2001; Nicolau et al. 2007;
Lidke et al. 2007).

In Ying et al. (2009), time-series analysis (Shumway and Stoffer 2006) was intro-
duced to better understand some SPT data that used relatively large (∼40 nm) gold
particles as labels and bright-field microscopy to do the tracking. Here, we extend this
time-series analysis to tracking measurements where the particles are much smaller
(5–10 nm), highly fluorescent quantum dot (QD) labels (Barroso 2011). This analysis
will extract additional fine temporal and spatial scale information about the dynam-
ics of the membrane. MSD analysis of the tracks made by the labeled receptors was
reported previously (Lidke et al. 2007; Andrews et al. 2008, 2009; Andrews 2011);
see also Lidke and Arndt-Jovin (2004), Lidke et al. (2004, 2005).

Complementary information about the organization of the membrane at a fixed
time is obtained by labeling the membrane proteins with nanogold particles with
5–10 nm diameters and then locating the gold with subnanometer resolution using
transmission electron microscopy. In Espinoza et al. (2012), we developed new meth-
ods for quantifying the clustering of the labeled proteins. We are currently building
stochastic models that will allow us to integrate the nanogold and QD data to obtain
a detailed understanding of the dynamics and organization of the cell membrane.



Insights into Cell Membrane Microdomain Organization from Live Cells 1859

The data we analyze are movies of the motion of QDs bound to the high affin-
ity immunoglobulin E (IgE) receptors (FcεRI) on mast cell membranes. We use a
time-series analysis that focuses on the jumps in the motion, that is, the differences
in the positions of a QD in two successive frames of a movie. The main analyti-
cal differences between the data measured with QD labels versus gold labels is that
the QDs blink and the lengths of the on and off times are highly variable. Math-
ematically, the probability distribution function of the on and off times is a very
slowly decaying power law for larger times. Intuitively, if a QD is on, then it stays
on for a long time, while if a QD is off, it stays off for a long time. Thus, stan-
dard techniques used to analyze data sets with small amounts of missing data are
not applicable. A minor point is that the algorithms that are used to produce the
paths of the QDs from the movies are probabilistic and consequently introduce a very
small percentage of unreasonable jumps that we eliminate from our analysis. These
path construction algorithms are now being improved, but the improvements will
not change our analysis or conclusions (see Jaqaman et al. 2008; Serge et al. 2008;
Saxton 2008; Manley et al. 2008; Pons and Mattoussi 2009; Smith et al. 2010;
Pinaud et al. 2010).

We begin our discussion in Sect. 2 by giving an overview of the experiments and
reporting on a few simple tests that produce some basic information about the data.
Monovalent quantum dot-immunoglobulin E (QD-IgE) complexes provide a non-
perturbing label for the high affinity IgE receptor, FcεRI, that is abundantly expressed
on mast cells (and is responsible for the symptoms of allergy and asthma). Results
of SPT experiments with only this non-perturbing fluorescent label present are called
unstimulated data. Cells were activated by the addition of increasing doses of non-
fluorescent multivalent antigen to crosslink the QD-IgE-tagged receptors. Results of
experiments with both QD-IgE and crosslinker present are called stimulated data.
In all cases, single molecule localization and video imaging produced movies of the
positions of the QDs as the receptors moved about in the cell membrane. In our
studies, we worked with two independent data sets. Access to duplicate data sets
provides some indication of how much the analysis varies between experiments.

In Sect. 3, we present the mathematical tools needed for the time-series analy-
sis. An important point is that time-series analysis requires the data to be ergodic
(Shumway and Stoffer 2006; Weigel et al. 2011) and stationary. For simple random
walks, this is never the case for the particle positions, but is true for the jumps be-
tween successive frames. Thus, we focus on the jumps and not on the MSD of the
positions of the particles. In the past, most analyses characterized the motion by a
diffusion coefficient. We prefer to work with the more detailed description provided
by the probability distribution functions (PDFs) of the jumps (see Saxton 2009). The
diffusion coefficient is then given by a simple formula involving the second moment
of the jumps and the time step. The blinking of the QDs significantly impacts the
construction of these tools.

In the case of the unstimulated data, in Sect. 4, we first provide evidence that the
jumps between successive frames are ergodic and stationary as is required by standard
time-series analysis. We also show that the jumps are not significantly autocorrelated.
This justifies putting all of the jumps for all paths and all times into a single data set.
These are extremely large data sets, containing over 350,000 jumps. We show that the
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jumps are mean zero with standard deviation for data set A of 138.0 nm and for data
set B of 139.5 nm. Knowing this, if the jumps are normally distributed, we can fit
the data with a mean zero normal distribution with the same standard deviation. Plots
of the data distribution and the normal fit show that the jumps are not close to being
normally distributed. Instead, there is a large excess of jumps whose components are
smaller than 50 nm, while jumps with components between 50 nm and 190 nm are
underrepresented. If the components of a jump are about 50 nm, then the 2D length
of the jump is about 70 nm, so we interpret this to mean that there are significant
inhomogeneities in the membrane on a scale smaller that 70 nm.

Having normally distributed jumps between successive movie frames is equivalent
to the angles of the jumps being uniformly distributed and the jump lengths having
a simple chi or equivalently, a simple Weibull distribution (Ying et al. 2009). We
show that the angles of the jumps are uniformly distributed. Consequently the jump
lengths cannot have a simple chi or Weibull distribution since the data are far from
being normally distributed. However, we can fit the jumps with two closely related
probability distribution functions: the general chi distribution and the general Weibull
distribution. We also use a novel power-law PDF that was designed to detect power-
law behavior (Ying et al. 2009; Adamic 2011) for both short and long jumps. All
of the fits have small relative mean square error. These fits produce an estimate of
the standard deviation that can be used to determine a corresponding simple chi or
Weibull distribution. From the plots of the distributions, we see that there is an excess
of jump lengths less than 70 nm.

All of the fits produce the same power-law behavior for small jump sizes. The
general chi distribution suggests that we can model the motion as diffusion in a fractal
(fractional dimensional) space of dimension approximately 3/2. This also quantifies
the effects of barriers to diffusion in the cell membrane. There are related results for
the dynamics of calcium channels in the plasma membrane in Weigel et al. (2011),
while Baumann et al. (2010) has interesting results about modeling the motion of
proteins in cells using diffusion in three-dimensional fractal spaces. See Kenkre et al.
(2008), Kalay et al. (2008), Novak et al. (2009) for models of diffusion with barriers.
For jumps of intermediate sizes, the power law gives a better fit than either the general
chi or Weibull distributions.

In Sect. 5, we analyze the data from the antigen stimulated cells. This analysis is
more complicated as the addition of stimulus means that the jump data are not sta-
tionary. For non-stationary data, we cannot mix data at different times. Importantly,
despite the large sizes of the data sets, at any given time there only are about 30 QDs
on, and consequently, the time-dependent data are noisy. From plots of the time-
dependent data, we see that adding a strong stimulus causes a rapid slowing of the
motion, producing a long tail that is ergodic and stationary. Similar results were ob-
tained in Andrews et al. (2008, 2009), Andrews (2011) using MSD-based analysis of
the diffusion coefficient. We analyze the transient data by fitting the time-dependent
standard deviation of the jumps with an exponential function and a power law. This
produces a mean lifetime α (half-life is

√
2α) for the slowing of the motion. For

weakly stimulated cells, the mean lifetime estimates are erratic, while for strongly
stimulated cells the mean lifetimes range from a few tens of seconds to a few seconds
with increasing stimulus.
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Fig. 1 IgE-FcεRI and
QD-IgE-FcεRI complexes.
Modified image taken from
Kraft and Kinet (2007)

Because the jumps between successive frames in the tail data are stationary, we
can apply the same analysis as for the unstimulated cells. For the strongest stimulus,
the standard deviation of the jumps in the tails is about 80 nm, a significant decrease
from the 140 nm for unstimulated cells. Again, we see that the jump components
are not normally distributed, with PDFs resembling those of the unstimulated data,
but with an even larger proportion of short jumps than in the unstimulated data. The
jump angles are again uniformly distributed, so we fit the jump lengths with general
chi, general Weibull and power-law distributions. For small jump lengths, the chi fit
indicates that the diffusion can be modeled as motion in a fractal space. The dimen-
sion varies from about 5/4 to 4/3. For intermediate jump sizes, the power-law fits are
significantly better than the chi or Weibull.

There are four appendices containing additional information to support our con-
clusions.

2 The Biological Data

The experimental data analyzed here were part of the study described in Andrews
et al. (2009). Rat mast cells (RBL-2H3) that endogenously express high levels of
FcεRI were labeled with a combination of low density QD-IgE and saturating levels
of “dark” IgE, both of which recognize the antigen dinitrophenyl (DNP). As a result,
most of the FcεRI in the cell membrane were in IgE-FcεRI complex, but only a
small percentage of the complexes were labeled with a QD (QD-IgE-FcεRI complex),
such that single particle tracking density was achieved. We have previously found
that the QD-IgE will bind to FcεRI on cells without inducing activation but will
initiate signaling upon crosslinking (Andrews et al. 2008), demonstrating that it is a
functional, monovalent reagent. A cartoon of the tetrameric IgE receptor and bound
IgE or QD-IgE is given in Fig. 1. All experiments were performed at physiological
temperatures (35 °C).

Ten seconds after initiation of a time series, the cells were stimulated by the
addition of multivalent antigen (bovine serum albumin decorated with 25 DNP,
DNP-BSA) which can cross link both IgE-FcεRI or QD-IgE-FcεRI, also illus-
trated in Fig. 1, making them into signaling competent oligomers (Andrews 2011;
Andrews et al. 2009). The QDs on the apical surface of the cells were tracked using
a wide-field fluorescence microscope equipped with an electron multiplying CCD
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Fig. 2 The longest paths for the unstimulated data

camera (Andor iXon 887) that acquired images with a frame rate of 20 frames/s for
3,000 frames, corresponding to a total time of 150 seconds. Image processing soft-
ware was used to locate the center of the QDs in each of the frames. The errors in
these measurements are discussed in Sect. 6.

A important difficulty in analyzing the data is that the QDs blink, that is, they
emit light for some period of time, then turn off for some other period of time,
repeating this cycle many times. To follow the QDs in time, individual QDs are
localized in each frame and then trajectories are built based on the location of
“on” QDs between frames and the diffusion coefficient (Andrews et al. 2009;
Lidke et al. 2011). The results of this process is to first produce a set of segments
where the QDs are on in successive frames. Then, the segments are connected based
on the probability that they are from the same QD-IgE-FcεRI complex, into a path
(Barroso 2011). The segments are connected based on a probability (calculated from
a free diffusion model) that the same QD-IgE-FcεRI complex has moved to a new
identified location while the QD was “off”. This algorithm can connect segments sep-
arated by up to 32 frames where the dot is off. This results in a data set that consists
of a large number of tracks of fixed length, one track per complex, each containing a
single path made up of one or more segments where the QD is on.

The data are dose-response where the dose is the concentration of stimulus added
and the response is measured by tracking and then analyzing the motion of the QDs.
For each data set, the cells were stimulated with six different concentrations of the
multivalent antigen DNP25-BSA: 0.000; 0.001; 0.010; 0.100; 1.000 and 10 µg/ml.
When the stimulus is zero, the cells are said to be unstimulated or resting. In fact,
we worked with two sets of biological data, labeled A and B. We could have com-
bined the data sets. However, independent analysis of these duplicate experiments
was useful for validating our conclusions.

The longest path for each of the A and B data sets for unstimulated cells are shown
in Fig. 2. In these figures, the start of the path is given by a black circle and the end
by a black diamond. The part of the path where the QD is on is drawn as a blue solid
line unless it is on for only one frame in which case it is drawn as a blue star. If two
segments where the QD is on are joined by a segment of k frames where the QD is
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Table 1 The number of tracks,
jumps between successive
frames and cells in data sets A
and B

Stimulus A B

Tracks Jumps Cells Tracks Jumps Cells

0.000 10,894 407,669 19 9,848 353,368 16

0.001 1,726 85,906 4 3,113 122,761 3

0.010 2,151 96,179 4 2,622 106,649 5

0.100 1,838 89,380 4 2,809 119,306 5

1.000 1,178 61,928 3 2,327 123,053 5

10.000 1,802 91,142 4 3,050 139,236 5

Table 2 The minimum, mean,
and maximum of the number of
QDs on at each time

Stimulus A B

Min Mean Max Min Mean Max

0.000 101 136 172 81 118 162

0.001 14 29 41 24 41 60

0.010 16 32 50 17 36 52

0.100 14 30 49 21 40 58

1.000 10 21 35 22 41 62

10.000 15 30 44 29 46 54

off, the end of the first segment is joined to the beginning of the second segment with
a red dotted line. This line is divided into k pieces by red x’s.

In the plot titles, the number of the track is displayed along with the concentration
of stimulus used. Next, the number of time steps in the path is given along with t0,
the start time for the path, tf , the time when the path ends, and ts , the time when
the stimulus was added. The smallest rectangle that the path will fit in has sides of
length MaxDistX and MaxDistY. More path information and figures are given in
Appendix A.

There is more unstimulated data because this case was both run as independent
experiments as for the stimulated cells, but was also run in parallel with each of the
stimulated cell experiments. From Table 1, we see that a large number of tracks were
generated, resulting in a very large number of valid jumps between successive frames.
This table also gives the number of cells used to generate the data. Table 2 shows that
very few QDs are on in each frame of the movie. Consequently, the data in a single
frame will be very noisy. Appendix B has detailed information about the statistics of
the blinking. Careful time-series analysis will in some cases allow combining the data
over all times. In this case, the data sets are very large so the noise in the statistical
analysis will be substantially decreased.

3 Analysis Tools

The application of elementary time-series methods (Shumway and Stoffer 2006) re-
quires the data to be ergodic and stationary. Intuitively, ergodic requires the statistics
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of the random variables to be independent of the spatial and temporal location. To
be stationary, the mean and standard deviation of the data over a small time interval
must not depend on time. We do not expect the data where the cells are stimulated
to be ergodic or stationary as the state of the cell is time dependent. Additionally, the
positions of the particles are not stationary because their standard deviation, which is
proportional to the to the square root of the MSD, grows with time. In this situation,
the standard statistical approach is to study the time series of the differenced data,
which for particle tracking data is just the jumps in the positions between succes-
sive time steps, so we will focus on the jumps. The biology indicates that the data
is spatially ergodic, that is, the properties of the cell membrane at different points
are statistically indistinguishable. For the unstimulated cells, the time at which data
is taken shouldn’t affect the data, so we model the data as being both spatially and
temporally ergodic. We will not assume that the jumps are stationary, independent or
identically distributed (IID). We will test the jump data for these important properties.

This discussion of the time-series analysis tools follows (Ying et al. 2009), where
additional details can be found. We write the statistics that we use as expected values.
It is important to know if the expected value is taken over all jumps at a given time,
over all jumps in a given path followed by one particle over time, or both. We begin
with a description of the time-dependent techniques applicable to the non-ergodic
data from stimulated cells. We then specialize these ideas to the data from unstimu-
lated cells where the data is modeled as ergodic. Next, we show how to apply these
ideas to the data generated using QDs that blink. We finish the discussion of time
series by showing these results are related to the diffusion coefficient and the MSD.
Finally, we show how to estimate continuous probability distribution functions for
the jumps.

Classically, the analysis of SPT data emphasized the MSD and the diffusion co-
efficient. We are interested in the fine temporal and spatial scales of the motion of
the QDs because we are interested in understanding the interaction of the proteins in
the cell membrane with the membrane and other proteins. Time-series analysis em-
phasizes the use of the standard deviation or, equivalently, the variance of the jumps,
which does not require averaging over time like the MSD. This analysis also empha-
sizes finding PDFs of the jumps, that is, the PDFs of the jump components, jump
lengths and the jump angles. These PDFs contain information about the motion of
the QDs at many spatial scales and the standard deviation, variance and diffusion
coefficient can easily be computed from the PDF of the jump lengths.

3.1 Time-Dependent Data

The paths of the QDs are erratic, so we will model the QDs positions using vector
valued random variables:

�Pn = (Xn,Yn), 1 ≤ n ≤ N, N > 0,

where Xn and Yn are real valued random variables and N and n are integers. The
jumps are also random variables:

�Jn = �Pn − �Pn−1 = (ΔXn,ΔYn), 2 ≤ n ≤ N.
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In polar coordinates, the lengths of the jumps Ln and the angles Θn between the
jump vectors and the x-axis are also random variables:

Ln = ‖�Jn‖ =
√

ΔX2
n + ΔY2

n, Θn = arctan(ΔYn,ΔXn), 2 ≤ n ≤ N,

where arctan gives a value in (−π,π] such that if Ln �= 0, then cos(Θn) = ΔXn/Ln

and sin(Θn) = ΔYn/Ln, and consequently, tan(Θn) = ΔYn/ΔXn if ΔXn �= 0. If
�J = (0,0), then Θ = 0 (in Matlab).

We will express the statistics for the position and jump random variables in terms
of the expected value operator E. In Sect. 3.3, we will show how to estimate the
expected values from the biological data. The time-dependent mean μ and standard
deviation σ of the positions are

μ(�Pn) = E(�Pn), σ 2(�Pn) = E
((�Pn − μ(�Pn)

) ◦ (�Pn − μ(�Pn)
))

, 1 ≤ n ≤ N,

while the time-dependent mean μ and standard deviation σ of the jumps are given by

μ(�Jn) = E(�Jn), σ 2(�Jn) = E
((�Jn − μ(�Jn)

) ◦ (�Jn − μ(�Jn)
))

, 2 ≤ n ≤ N. (1)

The means and standard deviations of other random variables have similar expres-
sions.

The time-dependent MSD is given by

MSDn,k = E
(
(�Pn+k − �Pn) ◦ (�Pn+k − �Pn)

)
, 1 ≤ k 	 N, 1 ≤ n ≤ N − k,

that is, writing �Pn+k − �Pn as a telescoping sum,

MSDn,k = E

(
k∑

j=1

�Jn+j ◦
k∑

j=1

�Jn+j

)
, 1 ≤ k 	 N, 1 ≤ n ≤ N − k.

If the �Jn are independent and mean zero, then

MSDn,k =
k∑

j=1

E(�Jn+j ◦ �Jn+j ), 1 ≤ k 	 N, 1 ≤ n ≤ N − k. (2)

The moments of the jump lengths Ln,

M(k)
n = E

(
Lk

n

)
, 0 ≤ k ≤ N, 2 ≤ n ≤ N,

are used in our analysis.
If

ρ̃n,k = E(�Jn ◦ �Jn−k), 0 ≤ k 	 N, k + 2 ≤ n ≤ N,

then the autocorrelation coefficients for the jumps are

ρn,k = ρ̃n,k

ρ̃n,0
, 0 ≤ k 	 N, k + 2 ≤ n ≤ N, (3)

if ρ̃n,0 �= 0. The random variables �Jn and �Jn−k are independent if and only if ρn,k = 0.
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3.2 Ergodic in Time Data

We now assume that the jumps are time independent, that is, they are independent and
identically distributed (IID). In this case, the random variables �Jn, ΔXn, ΔYn, Ln and
Θn are all independent copies of a single random variable �J, ΔX, ΔY, L and Θ . We
will also assume that �J, ΔX, ΔY are mean zero and have standard deviations σr , σx

and σy , respectively. We also assume that ΔX and ΔY are independent so that

σ 2
r = σ 2

x + σ 2
y .

Thus,

μ(�Jn) = E(�Jn) = E(�J) = μ(�J) = 0

σ 2(�Jn) = E(�Jn ◦ �Jn) = E(�J ◦ �J) = σ 2(�J) = σ 2
r , 2 ≤ n ≤ N.

From (2), the MSD is

MSDk = kE(�J ◦ �J) = kσ 2(�J), k ≥ 1. (4)

The second moments of the jump lengths satisfy

M(2) = M(2)
n = E

(
L2

n

) = E(�Jn ◦ �Jn) = σ 2(�Jn) = σ 2(�J) = σ 2
r , 2 ≤ n ≤ N.

An important null hypothesis is that the coordinates of the jumps, ΔX and ΔY,
are independent of each other and each is IID and normally distributed with mean
zero and standard deviation scale parameter s. Equivalently, L and Θ are indepen-
dent, with Θ uniformly distributed in [−π,π], and L has the probability distribution
w(r, s) = w(r/s)/s where

w(r) = re− r2
2 .

The PDF w(r, s) is a special case of the general chi distribution with scale parameter
s or the general Weibull distribution with shape parameter 2 and scale parameter√

2s. We will call this distribution the simple chi or simple Weibull distribution. The
moments of this distribution are

M(1) =
√

π

2
s, M(2) = 2s2 = σ 2

r .

Because of the complexity of the cell membrane, we do not expect the data to
satisfy the null hypothesis, but the deviation of the statistics for the biological data
from the null hypothesis will provide insight into the nature of the motion of the
receptors.

3.3 Time Series with Blinking

The estimation of the statistics related to the random variables in our model is made
more complicated by the time dependence of the statistics and by the missing data
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due to the blinking of the QDs. Generally, all analysis concepts are the same as in the
non-blinking case, except when the QD is off, computations are skipped.

A data set will contain M > 0 tracks described by

xm,n, ym,n, vm,n, 1 ≤ m ≤ M, 1 ≤ n ≤ N.

The vectors

�rm,n = (xm,n, ym,n)

estimate the position of the QDs. If vm,n = 1, then the QD is on and the position of
the QD is valid data, while if vm,n = 0, the QD is off. Even when the QD is off, we
assume that xn and yn are finite numbers. Each track contains only one path. For a
fixed track m, if nstart is the first value of n where vm,n = 1 and nend is the largest
value of n where vm,n = 1, then a path is given by the points satisfying

nstart ≤ n ≤ nend,

as shown in Fig. 2, where

t0 = nstart/20, tf = nend/20,

because there are 20 frames per second.
We first give some definitions that apply to data from both resting cells and stimu-

lated cells. As noted before, because the data from the stimulated cells is not ergodic,
the statistics for these data will depend on the time step n or equivalently on the time t .
Because of the blinking, we will need to count the valid data as we compute statistics.
We do this by introducing a modified definition of the expected value operator that
averages only over valid data. For example, if we set

vn =
M∑

m=1

vm,n,

which is the number of valid points at time n, then the time-dependent means of the
position vectors are

μ(�Pn) = E(�Pn) ≈ 1

vn

M∑
m=1

vm,n�rm,n if vn �= 0. (5)

and the time-dependent standard deviations of the position vectors are

σ 2(�Pn) = E
((�Pn − μ(�Pn)

) ◦ (�Pn − μ(�Pn)
))

≈ 1

vn

M∑
m=1

vm,n

(�rm,n − μ(�Pn)
) ◦ (�rm,n − μ(�Pn)

)
if vn �= 0.

In this section, expected values are undefined (not valid) if they are taken over an
empty set of data, that is, when the divisor in the expected value is zero. Also, because
of the blinking, vn is typically small.
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The jumps in the tracks are

Δ�rm,n = (Δxm,n,Δym,n) = (xm,n − xm,n−1, ym,n − ym,n−1),

1 ≤ m ≤ M, 2 ≤ n ≤ N.

The jump data is valid if vm,n = vm,n−1 = 1 or if Vm,n = 1 where

Vm,n = vm,nvm,n−1, 1 ≤ m ≤ M, 2 ≤ n ≤ N. (6)

A cautionary note: all tracks must contain at least one valid position. However, it is
possible (but not very likely) that a track does not have any valid jumps. In this case,
for a fixed m, Vm,n = 0 for all n. It is also possible, and more likely, that for fixed n,
Vm,n = 0 for all m.

If

Vn =
M∑

m=1

Vm,n, 2 ≤ n ≤ N, (7)

that is, the number of valid jumps at time n, then the means of the jumps are estimated
using

μ(�Jn) = E(�Jn) ≈ 1

Vn

M∑
m=1

Vm,nΔ�rm,n if Vn �= 0, (8)

while the standard deviations of the jumps are estimated by

σ 2(�Jn) = E
((�Jn − μ(�Jn)

) ◦ (�Jn − μ(�Jn)
))

≈ 1

Vn

M∑
m=1

Vm,n

((
Δ�rm,n − μ(�Jn)

) ◦ (
Δ�rm,n − μ(�Jn)

))
, if Vn �= 0. (9)

Also, the lengths of the jumps and the angles between the jumps and the x-axis
are

Lm,n =
√

Δx2
m,n + Δy2

m,n, θm,n = arctan(Δym,n,Δxm,n),

for 1 ≤ m ≤ M and 2 ≤ n ≤ N . All of the moments of the jump sizes are estimated
using

M(k)
n ≈ 1

Vn

M∑
m=1

Vm,nL
k
m,n, k ≥ 0, 2 ≤ n ≤ N.

To estimate the time-dependent autocorrelation coefficients (3), we need to com-
pute �Jn ◦ �Jn−k . We can do this when Vm,n and Vm,n−k are valid jumps (6), but prefer
to make the more restrictive requirement that all of the Vm,n−i are valid jumps for
0 ≤ i ≤ k:

Qm,n,k = Vm,n ∗ Vm,n−1 ∗ · · · ∗ Vm,n−k, 0 ≤ k 	 N, k + 2 ≤ n ≤ N, 1 ≤ m ≤ M,
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and then set

Qn,k =
M∑

m=1

Qm,n,k.

If

ρ̃n,k = 1

Qn,k

M∑
m=1

Qm,n,k(Δ�rm,n ◦ Δ�rm,n−k), if Qn,k �= 0,

then the estimate of the time-dependent autocorrelation coefficient is

ρn,k = ρ̃n,k

ρ̃n,0
, (10)

if ρ̃n,0 �= 0.

3.4 Ergodic and Stationary Data

If the jump data is also ergodic in time and stationary, then we can also take expected
values over time. So, using (7), define

V =
N∑

n=2

Vn =
N∑

n=2

M∑
m=1

Vm,n,

and then as in (8), define

�μ = μ(�J) = E(�J) ≈ 1

V

N∑
n=2

M∑
m=1

Vm,nΔ�rm,n if V �= 0. (11)

For the standard deviation, as in (9) replacing μ(�Jn) by μ(�J), define

σ 2
r = σ 2(�J) = E

((�J − μ(�J)
) ◦ (�J − μ(�J)

))

≈ 1

V

N∑
n=2

M∑
m=1

Vm,n

((
Δ�rm,n − μ(�J)

) ◦ (
Δ�rm,n − μ(�J)

))
, if V �= 0.

(12)

If �J is mean zero, then

σ 2
r = σ 2(�J) = E(�J ◦ �J) ≈ 1

V

N∑
n=2

M∑
m=1

Vm,n(Δ�rm,n ◦ Δ�rm,n), if V �= 0. (13)

The moments of L are estimated by

M(k) = E
(
Lk

) ≈ 1

V

N∑
n=2

M∑
m=1

Vm,n‖Δ�rm,n‖k, if V �= 0.
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Note that

M(2) = σ 2
r .

To define the time-independent autocorrelation coefficients, let

Qk =
N∑

n=k+2

Qn,k =
N∑

n=k+2

M∑
m=1

Qm,n,k,

and then, using (10), set

ρ̃k = 1

Qk

N∑
n=k+2

M∑
m=1

Qm,n,k(Δ�rm,n ◦ Δ�rm,n−k), if Qk �= 0.

Finally,

ρk = ρ̃k

ρ̃0
, (14)

if ρ̃0 �= 0.

3.5 The Diffusion Coefficient

For mean zero IID �Jn, the MSD (4) is given by

MSDk = kM(2) = kσ 2
r .

It is known that in two dimensions

MSD(t) = 4Dt,

where D is the diffusion coefficient. If the time step in the random walk is Δt and
t = kΔt , then

4D t = MSD(t) = MSDk = M(2)k = M(2)

Δt
t.

Consequently, the diffusion coefficient is given by

D = M(2)

4Δt
= σ 2

r

4Δt
. (15)

If the components of the jumps are independent, then

σ 2
r = σ 2

x + σ 2
y .

In the case that the components of the jumps are normally distributed with mean zero
and standard deviation s, then σx = σy = s and

σ 2
r = 2s2.
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Equivalently the length of the jumps have a simple chi distribution with second mo-
ment M(2) = 2s2 and the jump angles are uniformly distributed. Then,

D = s2

2Δt
. (16)

For the stimulated data, we define the time-dependent diffusion coefficient using
(1):

Dn = σ 2(�Jn)

4Δt
.

This time-dependent diffusion coefficient does not depend on how the segments are
connected to make a path.

3.6 Estimating Probability Distribution Functions

Even though we are using vector valued random variables, we will only com-
pute PDFs for scalar valued random variables, so let yj , 1 ≤ j ≤ J , J  1 be
real numbers. Choose a number a so all (or maybe almost all) of the yj satisfy
−a ≤ yj ≤ a. We will then divide the interval [−a, a] into 2I + 1 intervals of length
Δx = 2a/(2I + 1). The centers of the intervals are then given by

xi = iΔx, −I ≤ i ≤ I,

and the intervals, called bins, are given by

Ii = [
(i − 1/2)Δx, (i + 1/2)Δx

]
, −I ≤ i ≤ I.

Now let Ki be the number of data points yj ∈ Ii and then set

K =
I∑

i=−I

Ki, pi = Ki

KΔx
, −I ≤ i ≤ I. (17)

The pi give an approximation to a continuous probability distribution in the sense
that

I∑
−I

piΔx = 1.

The mean and standard deviation of the data can be estimated using

μ = M(1) =
I∑

−I

xipiΔx, M(2) =
I∑

−I

x2
i piΔx, σ 2 = M(2) − μ2. (18)
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4 Analysis of the Data from Unstimulated Cells

In this section we use time-series analysis to better understand the data from unstim-
ulated cells. We begin by using the time-dependent means and standard deviations of
the jumps in position of successive time steps to support modeling the data as ergodic
and stationary. Next, we compute the autocorrelation coefficients and show that the
jumps at different times can be modeled as independent. With this in place, it is rea-
sonable to use all of the jumps at all times to estimate the mean and standard deviation
of the jumps. The means of all of the jumps are near zero, supporting modeling the
jumps as mean zero. The standard deviations of all of the jumps for data sets A and B
are similar, supporting modeling the jumps as identically distributed. Consequently,
we model the jumps as mean zero and IID and proceed with analyzing the probabil-
ity distribution functions for the jump components, jump lengths and jump angles.
Because we have two data sets generated by independent experiments, this analysis
also supports modeling the jumps as identically distributed.

An important result is that the components of the jumps are not normally dis-
tributed, as should be expected as the cell membrane is a complex medium. However,
the angles of jumps are uniformly distributed, as also should be expected as there is
no preferred direction in the cell membrane. Consequently, the PDF of the jump sizes
contain all of the information about the failure of the components of jumps to satisfy
the null hypothesis of being normally distributed, so we emphasize the analysis of
the distribution of the jump sizes.

A minor point is that during this analysis we found that the path-constructing
algorithms were producing a very small percentage of anomalous jumps with sizes
larger that 346 nm. This accounts for less than 1/2 percent of the data, consequently
we eliminated these jumps from the analysis; see Appendix C. The path-constructing
algorithms are being improved, but any improvements should not significantly affect
our results.

4.1 Preliminary Analysis

As noted before, we assume that the data for any cell are spatially ergodic as there
are no special locations on the cell membrane. The time-dependent means (8) and
standard deviations (9) of the jumps are shown in Figs. 3 and 4. These plots are noisy
because only a few QDs are on at any given time (see Appendix B), but still, we can
see that the data sets do not have a noticeable trend, supporting modeling the data as
time ergodic and stationary.

We estimated the mean �μ (11) and standard deviation σr (12) of the jumps and
record these in Table 3. Note that �μ is listed componentwise, while σr refers to the
length of the jumps. We use the dimensionless parameter ‖�μ‖/σr to estimate the size
of the mean, which is close to zero. The fact that the standard deviations for data sets
A and B are close to the same, supports modeling the jumps as identically distributed.

To test if the jump components computed from the unstimulated data are inde-
pendent, we computed their autocorrelation coefficients for 0 ≤ k ≤ 5 and display
them in Table 4. To understand the significance of these coefficients, we computed
the autocorrelation coefficients for simulated IID normally distributed random jumps
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Fig. 3 Time-dependent means of the jump components

Table 3 Number of jumps N ,
mean �μ, standard deviation σr

and mean zero test ‖�μ‖/σr for
the jumps

N �μ σr ‖�μ‖/σr

A 405,600 (0.2713,−0.1351) 138.0 0.0023

B 351,700 (−0.1184,0.0631) 139.5 0.0009

Table 4 Autocorrelation coefficients of the jumps and their corresponding coefficients for computer gen-
erated random jumps

k 0 1 2 3 4 5

A 1.0000 0.0848 −0.0483 −0.0239 −0.0157 −0.0076

Random 1.0000 −0.0000 −0.0003 −0.0017 −0.0020 −0.0031

B 1.0000 0.0767 −0.0503 −0.0261 −0.0146 −0.0102

Random 1.0000 −0.0000 −0.0007 0.0012 −0.0001 0.0009

with mean and standard deviation of the full data set. Here, it is important to take
into account the blinking of the QDs, so for the generated data, the autocorrelation
coefficients were computed using the same valid positions as the biological data. The
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Fig. 4 Time-dependent standard deviations of the jump components

results were averaged over 100 simulations. The autocorrelations for the biological
data are larger than for the simulated random data, but are still sufficiently small that
we will model them as zero, that is, we model the jumps as independent. Putting all
of this together, we will model the unstimulated data assuming the jumps are ergodic
in space and time, stationary, mean zero and IID. A natural next step is to analyze the
probability distribution functions for the jump components, the jump lengths and the
jump angles.

4.2 Analyzing the Distribution of the Jump Components

We will compute the PDFs of the jump components using the results in Sect. 3.6 and
then check to see if the PDFs are normally distributed. We put the data into 500 bins
(17), displaying the results in Fig. 5. We used the PDFs to compute the mean and stan-
dard deviation of the jumps using (18), which agree with the values given in Table 3.
Next, we used the standard deviations to determine a mean zero normal distribution
that best fits the biological data and plotted these in Fig. 5. Clearly the distribution of
the jump components are not normally distributed. However, these distributions are
very similar for both components and for data sets A and B, supporting modeling the
jump data using identically distributed random variables.
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Fig. 5 Distributions of the jump components and their normal fits

More importantly, from Fig. 5 we see that for the x and y jump components, there
is an excess of short jumps. More precisely, for |x|, |y| < 50 nm, short jumps are
in excess of what would be expected for a normal distribution. For approximately
50 < |x|, |y| < 190 nm, there are fewer jumps than in a normal distribution. A simple
explanation for the excess short jumps is that there are barriers to longer jumps in
the cell membrane and the scale of some of these barriers is less than 50 nm for the
jump components or 70 nm for the jump lengths. Most importantly, the fact that the
PDFs for the data are smooth implies there are significant barriers to the diffusion of
receptors for every length scale.

To test if the components of jumps are normally distributed, we use the two-sample
Kolmogorov–Smirnov goodness-of-fit hypothesis test (kstest2 in the Matlab statistics
toolbox). The null hypothesis is that the jump components come from a normal dis-
tribution. We use a stringent significance level α = 0.0001. The p-values for data set
A and B for both the x and y jump components are 0.000. The decision to reject the
null hypothesis occurs when the significance level α = 0.0001 equals or exceeds the
p-value. As indicated by Fig. 5, this is a strong rejection of the null hypothesis, so
the x and y jump components will not be modeled as normally distributed.
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Fig. 6 Data angles (top) and generated random angles (bottom) for data sets A and B

4.3 Analyzing the Distribution of the Angles and Jump Lengths

For IID random walks, the jump components are normally distributed if and only if
the jump angles are uniformly distributed, and the jump lengths have a simple chi
distribution (Ying et al. 2009), which is the same as the simple Weibull distribution.
The previous discussion shows that the components of the jumps are not normally
distributed. Thus it cannot be the case that both the jump angles are uniformly dis-
tributed and the jump lengths have a simple chi distribution. Intuitively, we expect
that the jump angles to be uniformly distributed because at a point in the cell mem-
brane there is no preferred direction.

To estimate the distribution of the angles, we divided [−π,π] into 500 bins and
then binned the angles and computed their PDF (see Fig. 6). The angles are uniformly
distributed; their PDF is θ = π/2 = 0.1592. For both data sets, the mean of the angles
differs from π/2 by less than 0.0001. We also generated the same number of angles
as in the data, binned the results, and plotted these PDFs (again, see Fig. 6). These
plots are very similar to the plots of the data. We also plot the mean and standard de-
viation of the angles to help in comparing the plots. To test if the angles are uniformly
distributed, we again used the two-sample Kolmogorov–Smirnov goodness-of-fit hy-
pothesis test with a significance level α = 0.0001. The null hypothesis is that these
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Fig. 7 Jump lengths PDFs with the general chi, general Weibull and power-law fits

Table 5 General chi, general Weibull, and power-law fit parameters to the PDF of the jump lengths, and
their relative mean square errors (e)

General chi General Weibull Power law

d s e k s e α β s e

A 1.35 116.79 0.0086 1.49 130.39 0.0035 1.54 9.78 561.02 0.0031

B 1.41 116.37 0.0056 1.55 133.70 0.0022 1.59 14.10 663.27 0.0020

angles come from a uniform distribution. The p-value for data set A is 0.8567, and
for data set B is 0.7614. The rejection of the null hypothesis occurs when the signifi-
cance level α equals or exceeds the p-value, so we cannot reject the null hypothesis.
The magnitude of the p-values strongly supports the modeling of the jump angles
with a uniform distribution.

Now that we know that the jumps cannot have a simple chi or Weibull PDF, we
will check if the PDFs of the data are given by any of three other distributions (Ying
et al. 2009). The general chi PDF with d degrees of freedom and scale factor s is
c(r, s, d) = c(r/s, d)/s where

c(r, d) = 2

2d/2Γ (d/2)
rd−1e− r2

2 , (19)

r ≥ 0, s > 0, d ≥ 1, and the gamma function satisfies Γ (n) = (n − 1)! when n is an
integer. The general Weibull PDF is w(r, s, k) = w(r/s, k)/s where

w(r, k) = krk−1e−rk

, (20)

where r > 0, s > 0 and k > 0. The simple chi distribution is given by d = 2 and the
simple Weibull is given by k = 2 in which case s = √

2σr . The power-law distribution
was devised in Ying et al. (2009) where it was called the long-short distribution. It is
designed to test for power laws for both small and large r . It is given by p(r, s,α,β) =
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p(r/s,α,β)/s, where

p(r,α,β) = α(β − 1)rα−1

(1 + rα)β
, (21)

r ≥ 0, s > 0, α > 0 and β > 1.
The second moments of these distributions are

M(2)
c = s2d, M(2)

w = s2Γ

(
1 + 2

k

)
, (22)

and

M(2)
p = s2 Γ (1 + 2

α
)Γ (β − 2

α
− 1)

Γ (β − 1)
, α(β − 1) − 2 > 0. (23)

All of these formulas over estimate

σr ≈
√

M(2),

because there are very long jumps in the data.
The parameters for the fits along with the mean square relative error for the fits are

given in Table 5. The relative errors are all less than one percent, so the fits are very
good. We plot the jump lengths PDFs along with the three fits in Fig. 7. From this
figure, we see that all fits underestimate the number of jumps near r = 50 nm. For r

large, the chi and Weibull distributions decay exponentially, but the chi decays faster
than the Weibull. Both underestimate the number of longer jumps with the Weibull
being better than the chi. The power law provides the best estimates for the larger
jump sizes. The decay for large r of the power-law distribution is of the form

p ≈ Cr−γ , γ = α(β − 1) + 1. (24)

For data set A, γ = 14.521 and for data set B, γ = 21.829, so the decay of the long
jumps is quite rapid.

All these distributions with d = k = α have the same power law near r = 0:

p ≈ Crd−1.

More precisely, we used the Matlab function rat to find the closest rational approx-
imate of d , k, and α with a denominator less than 10. The chi distribution for data
set A gives 4/3; all others give 3/2. The fact that d is less than to 2 indicates that the
PDF of the jump lengths are not close to normally distributed. It is interesting that
the estimates of d are so consistent for the different distributions, indicating that this
behavior is very robust.

To better understand the consequence of d being less than 2, we compare the
general chi and Weibull distributions for the data to the theoretical distribution for
IID jumps that are normally distributed. We use (22) to compute M

(2)
c for the data

using the values of s and d that are given in Table 5. Then we use

d = 2, s =
√

M
(2)
c

d
,
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Fig. 8 In the top row, comparison of the simple chi and general chi distributions that have the same
second moment as the data, and in the bottom row, comparison of the simple Weibull and general Weibull
distributions that have the same second moment as the data

to compute the distribution expected in the case of normal diffusion. The plots of the
distributions given in Fig. 8 clearly indicate that there are excessive short jumps for
small r . We now repeat this for the Weibull distribution using (22) to compute M

(2)
w

for the data using the values of s and k that are given in Table 5. Then we use

d = 2, s =
√√√√ M

(2)
w

Γ (1 + 2
k
)
,

to compute the distribution expected in the case of normal diffusion. Again, the plots
of the distributions given in Fig. 8 clearly indicate that there are excessive short jumps
for small r .

Another way to quantify the excess short jumps is to use the first point where the
two PDF curves in Fig. 8 cross which we give in Table 6. We can also use the curves
for the jump components shown in Fig. 5. For both the A and B data sets, we estimate
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Table 6 Estimates of the point
with the smallest r where the
normal and general chi and
Weibull distributions curves
cross

Chi Weibull rc

A 64 nm 75 nm 70 nm

B 64 nm 77 nm 70 nm

the crossing points as xc = 50 nm and yc = 50 nm and then set

rc =
√

x2
c + y2

c ≈ 70 nm. (25)

All of these estimates say that there is a significant excess of jumps substantially
shorter than 70 nm. It is reasonable to attribute this excess of small jumps to obstruc-
tions to the motion of the receptors on the tens of nanometer scale. Moreover, for
IID random walks in spaces of dimension d that have normally distributed jumps,
the distribution of the jump sizes is given by c(r, s, d), so d gives an estimate of the
dimension of the space in which the diffusion is occurring. In three dimensions, this
is the well-known Maxwell–Boltzmann distribution. It appears as if the cell mem-
brane has dimension d < 2, which is really a measure of how much the jump lengths
are reduced from normal diffusion in the cell membrane (Ying et al. 2009). We can
also interpret this result to mean that the diffusion is in a fractal space of dimension
approximately d . In Ying et al. (2009), the data sets are much smaller, so the results
are much noisier, but still d was found to be smaller than two.

4.4 Summary

This section began by showing that it is reasonable to model the jump data from un-
stimulated cells as ergodic, stationary, independent, identically distributed and mean
zero. Consequently, the data can be studied using standard time-series analysis. The
fitting of the distributions of the jump components shows that there is an excess of
short jumps. We also show that the jump angles can be modeled as uniformly dis-
tributed, but that the jump lengths cannot be modeled by a simple chi distribution.
However, the jump lengths distribution can be fit with a general chi, general Weibull
or a power law. All of these fits show that, for small r , the distribution behaves like
rd−1 where d < 2, which implies there is an excess of short jumps as compared to
normally distributed jumps. The fit by the chi distribution suggest that the motion of
the QDs can be modeled as diffusion in a fractal space of dimension d . Finally, we
compared the general chi and general Weibull fits to simple chi and simple Weibull
distributions with the same standard deviation to see that there are substantial barri-
ers to free diffusion well below the 70 nm scale. For jumps of intermediate size, the
power-law distribution gives the best fit and estimates that the power-law decay is
fast. Other authors have fit jump data with a weighted average of several Gaussians
(Kubitscheck 2009), but this would not capture the power-law behavior.

These results have significant implications for biologists studying membrane dy-
namics and heterogeneity. Current models suggest that the movement of proteins
in membranes is confined by interactions with membrane structures such as lipid
rafts, protein islands and cytoskeletal corrals (Pike 2006; Lillemeier et al. 2006;
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Kusumi et al. 2005; Lidke and Wilson 2009). Previous analysis of similar data sets
to those studied here provided clear evidence for the existence of micron-scale cy-
toskeletal corrals that form large confinement zones for QD-IgE-FcεRI complexes
(Andrews et al. 2008, 2009; Andrews 2011). Our more detailed analysis establishes
the presence of additional confinement zones on the order of tens of nanometers
within the actin-defined corrals. Previous high-resolution electron microscopy (EM)
showed that receptors are distributed in clusters across the membrane (Andrews 2011;
Wilson et al. 2002; Seagrave et al. 1991). The nanometer-scale clusters seen previ-
ously by EM are very likely a freeze-frame representation of membrane microdomain
organization now revealed by live cell single particle tracking. This connection is
even clearer using a new method of analyzing clustering (Espinoza et al. 2012) that
emphasizes compact clusters.

An even more important point is that the PDFs for the jump components and the
jump lengths are smooth, that is, there are no special features at any length, implying
that there are barriers at all scales. It would seem that the rafts, island and corrals do
not cause diffusion to slow at any dominant length scale, implying that these struc-
tures have a wide range of sizes.

5 Analysis of the Data from Stimulated Cells

Plots of the time-dependent standard deviation of the jumps presented in Fig. 9 show
that the motion of the QDs in stimulated cells can be broken into three parts: the
same as in unstimulated cells until the stimulus is added at 10 seconds; a slowing of
the motion that is highly stimulus dependent; and then a long period of slower motion
in the tail. The plots also include some fits to the data that will be explained below.
A striking feature of the plots is that they are noisy as a function of time. This is
because, at any given time, there are approximately 30 QDs on (see Table 2), which
is a small data set. As we analyze the data, we will see that we should divide the data
into two cases: weak stimuli (0.001,0.01) and strong stimuli (0.1,1,10). Because
of the simple relationship (15) between the diffusion coefficient and the standard
deviation of the jump sizes, these plots are essentially the same as those in Lidke
et al. (2007), Andrews et al. (2008, 2009), Andrews (2011). As before, we removed
jumps larger than 346 nm from the analysis.

To better understand the dependence of the jump sizes on stimulus and time, we
divide the jump sizes into three bins: short jumps that are smaller than 70 nm; medium
jumps that are between 70 nm and 190 nm; and long jumps that are greater than
190 nm. Figure 10 shows how the percentage of jump lengths changes over time
with increasing stimulus. From these figures we see that, as time increases, not much
changes for weak stimuli, while for strong stimuli there is a substantial increase in
the percentage of short jumps and a substantial decrease in percentage of long jumps.

5.1 Analyzing the Slowing

Now we quantify the transition from diffusion in the unstimulated cells to that when
the cells are stimulated. We do this by fitting the standard deviation with both a de-
caying exponential and a power law. The exponential fit of the jump sizes is given by
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Fig. 9 Time-dependent standard deviations of the jump lengths and their exponential and power-law fits

a function of the form

S(t) = (Sl − Sr)e
−max(0,(t−ts ))/tm + Sr .

The fit S(t) is the approximation to the standard deviation, t is the time in seconds,
ts = 10 sec (200 time steps) is the time at which the cells were stimulated, and tm,
Sl and Sr are parameters to be computed. The function S(t) is the constant Sl for
0 ≤ t ≤ ts and then, as time increases, decays exponentially to the value Sr ; see Fig. 9.
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Fig. 9 (Continued)

To capture any scaling behavior, we used a power-law fit of the form

S(t) = Sl − Sr

(1 + max(0,t−ts )
ts

)β
+ Sr .

Again, β , Sl and Sr are to be computed and S(t) is the constant Sl for 0 ≤ t ≤ ts
and has a power-law decay to Sr . The power β is dimensionless. The coefficients for
these fits are given in Table 7.

For the weak stimuli, the fitting program produced erratic results, that is, if we
changed the initial guesses or the parameters in the fitting algorithm, the results for
the parameters would change, but the quality of the fits remained the same. This
behavior is caused by the large noise in the data and the small changes in the stan-
dard deviations. As a consequence, the fits for the weak stimuli are not reliable. In
particular, in Fig. 9, the plot of data set A for stimulus 0.001 has an unreasonably
rapid change for small time, consequently the corresponding value for β in Table 7
is unreasonably large. On the other hand, for the strong stimuli, the fits are excellent.
In all cases, both the exponential and power-law fits are very close to each other.
The exponential fits provide a mean lifetime that quantifies how much faster the
transition between fast and slow motion occurs as the stimulus increases. For the
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Fig. 10 The time- and stimulus-dependent percentages of the jump lengths

strong stimuli cases, the exponential fits agree with those found in Andrews et al.
(2008).

For both fits, the values of Sl are estimates of the standard deviation of the jumps
in unstimulated cells, which are close to the values given in Table 3, but are based on
much smaller data sets given by 0 ≤ t ≤ ts and thus have more noise. For the strong
stimuli, Sr gives an estimate of the standard deviation of the jumps in the tail which
are from 45 % to 60 % of the standard deviation compared to when the cells are
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Fig. 10 (Continued)

Table 7 The parameters for the exponential and power-law fits of the time-dependent standard deviation
of the jump lengths for data sets A and B. Column 2 gives the number of jumps used in the fit, r is residual
for the fit. The stimuli are divided into weak (W,0.001,0.110) and strong (S,0.100,1.000,10.000)

Stimulus Jumps Exponential fit Power-law fit

Sl Sr tm r Sl Sr β r

A W 0.001 85,752 121.36 112.09 0.09 14.1 121.36 112.09 115.66 14.1

W 0.010 96,007 121.41 107.68 40.16 14.1 123.48 102.41 0.46 14.2

S 0.100 89,262 124.16 80.35 19.31 14.4 125.34 73.38 0.82 14.7

S 1.000 61,889 125.51 64.93 5.08 14.8 125.98 64.41 2.62 14.9

S 10.000 91,032 133.15 78.15 1.14 13.8 133.18 78.14 9.47 13.8

B W 0.001 122,435 131.04 114.90 26.43 12.7 132.81 110.65 0.65 12.6

W 0.010 106,451 134.93 107.19 32.48 13.4 136.31 83.61 0.31 13.4

S 0.100 119,108 142.22 80.68 30.09 12.4 144.48 31.50 0.33 12.3

S 1.000 122,970 138.50 62.66 4.81 11.4 139.00 61.79 2.58 11.3

S 10.000 139,102 130.91 75.46 2.52 11.4 130.18 74.88 3.43 11.3
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Fig. 11 The time-dependent standard deviations of the tails with their stationary times marked by a verti-
cal dashed line and the mean value of σ for the tails given by a horizontal solid line

unstimulated. It is interesting that for the strong stimuli, Sr decreases for the stimuli
going from 0.100 to 1.000, but then increases slightly for stimulus 10.000.

In the exponential fit, the coefficient tm has units of seconds and is called the
mean lifetime (the half-life is

√
2tm) and gives the time t − ts in seconds where

S(t) = S(ts)/e. The mean lifetime tm is erratic for weak stimuli. For the strong stim-
uli, the mean lifetimes range from 30 to 1 s. In the literature, after a small multiple
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Fig. 11 (Continued)

Table 8 The stimulus, the time
at which the time series
becomes stationary (tst ), and the
number of jumps in the tail. The
weak (W) and strong (S) stimuli
are separated by an empty line

Stimulus A B

tst Jumps tst Jumps

W 0.001 10.20 80,522 81.50 56,017

W 0.010 101.10 27,475 107.65 31,341

S 0.100 82.40 34,810 120.05 22,822

S 1.000 30.85 47,662 30.85 94,559

S 10.000 14.60 81,890 20.15 121,932

of these times, the QDs are said to be immobilized. However, as the standard devi-
ation never drops much below one half of the standard deviation before stimulation,
complete immobilization is never achieved. In the power-law fits, a value of β ≤ 3
indicates a very slow decay, which happens in four cases for the strong stimuli. Also,
for increasing strong stimulus, the mean lifetime steadily decreases and the exponent
β in the power-law fit steadily increases.
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Table 9 For the stimulated cell data, the standard deviation σr of the jump lengths and the diffusion
coefficient D, both before stimulation and in the tails for data sets A and B. The weak (W) and strong (S)
stimuli are separated by an empty line. For comparison, values for unstimulated (U) data are included

Stimulus Before stimulus Tail

Jumps σr D Jumps σr D

A U 0.000 405,600 138.00 0.0982 351,700 138.00 0.0982

W 0.001 5,182 121.36 0.0736 80,522 112.09 0.0628

W 0.010 6,366 118.67 0.0704 27,475 109.15 0.0596

S 0.100 7,540 123.81 0.0766 34,810 81.79 0.0334

S 1.000 4,376 124.99 0.0781 47,662 65.20 0.0213

S 10.000 6,165 132.85 0.0882 81,890 78.21 0.0306

B U 0.000 351,700 139.50 0.0973 351,700 139.50 0.0973

W 0.001 6,896 136.82 0.0936 56,017 114.70 0.0658

W 0.010 5,948 137.60 0.0947 31,341 107.61 0.0579

S 0.100 8,082 144.31 0.1041 22,822 78.62 0.0309

S 1.000 7,839 139.24 0.0969 94,559 62.39 0.0195

S 10.000 8,423 132.59 0.0879 121,932 75.28 0.0283

5.2 Analyzing the Tails

Using the exponential fit, we estimate the time tst at which the motion becomes sta-
tionary by computing the smallest time tst for which S(tst ) − Sr ≤ 1 nm. The expo-
nential and power-law fits give essentially the same value. The tail of the time series
is defined as the data for times t such that tst ≤ t ≤ 150 s and are illustrated in Fig. 11.
Table 8 gives the values of tst and the number of jumps in the tails, which is quite
large. For weak stimuli, the results for tst are erratic, but for strong stimuli the times
decrease with increasing stimuli. The times tst for strong stimuli are from 4 to 13
times longer than the mean lifetimes given in Table 7.

In Table 9, we present the standard deviation σr of the jumps computed using
(25) where σx and σy are the standard deviation of the jump components given in
Table 14. The values of σr before stimulus are close to those for the unstimulated
data considering that they are based on significantly smaller data sets. With increasing
stimulus, the values of σr in the tails decrease dramatically, but we do see a modest
increase for the stimulus 10 µg/ml. For ease of comparison with the literature, the
diffusion coefficients given by (15), using units of nm2/µs = µm2/s, are included
in the table. Note that, for example, in data set A for stimulus 1.000, the standard
deviation decreases by a factor of 2 after stimulation, but the diffusion coefficient is
reduced by a factor of 4. Thus, using the diffusion coefficient to measure slowdown
exaggerates the slowing of the motion compared to using the standard deviation.
Indeed, the units of the standard deviation and the diffusion coefficient imply this.

For the tail data, Table 10 gives the percentages, averaged over time, of the jump
sizes in the bins shown in Fig. 10. With the exception of stimulus 10.000, with in-
creasing stimulus, the percentage of short jumps increases from about 30 % to about
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Table 10 For the tail data, the percentage of jump lengths (nm) for data sets A and B

Stimulus A B

≤70 70–190 >190 ≤70 70–190 >190

0.000 32.89 49.68 17.44 30.80 51.37 17.83

0.001 46.56 43.27 10.17 44.97 44.55 10.48

0.010 48.94 41.34 9.72 50.94 39.83 9.23

0.100 68.97 26.44 4.59 72.55 23.31 4.14

1.000 77.48 20.40 2.12 81.11 17.02 1.87

10.000 69.30 27.21 3.49 72.17 24.78 3.06

Table 11 General chi, general Weibull and power-law fit parameters to the PDF of the jump lengths of
the tail, and their relative mean square errors (e), for data sets A and B. The last column is the power-law
exponent given by (24). The weak (W) and strong (S) stimuli are separated by an empty line

Stimulus General chi General Weibull Power law

d s e k s e α β s e γ

A W 0.001 1.20 96.1 0.029 1.35 98.9 0.015 1.49 3.60 167.3 0.011 4.88

W 0.010 1.21 89.8 0.041 1.36 93.2 0.024 1.58 2.73 111.8 0.017 3.73

S 0.100 1.28 51.4 0.060 1.41 56.3 0.038 1.96 1.76 36.3 0.007 2.48

S 1.000 1.44 40.5 0.035 1.55 47.6 0.023 2.02 2.04 39.8 0.003 3.10

S 10.000 1.34 51.4 0.039 1.46 57.7 0.023 1.89 2.04 47.3 0.003 2.97

B W 0.001 1.25 95.6 0.025 1.40 101.5 0.013 1.53 4.07 193.0 0.010 5.69

W 0.010 1.22 85.3 0.046 1.36 89.1 0.027 1.66 2.33 85.9 0.015 3.20

S 0.100 1.27 45.3 0.071 1.39 49.6 0.046 2.00 1.68 29.7 0.008 2.36

S 1.000 1.36 35.0 0.050 1.48 40.0 0.032 2.05 1.80 27.7 0.002 2.64

S 10.000 1.30 48.1 0.045 1.42 53.0 0.026 1.88 1.94 40.0 0.003 2.77

80 %, the percentage of medium jumps decreases from about 50 % to about 17 %,
while the percentage of long jumps decreases from about 17 % to about 3 %. These
trends reverse slightly for stimulus 10.000.

From Fig. 11 (and from Figs. 9 and 10), it appears that the tail data is ergodic and
stationary, so that we can apply the techniques used to analyze the data from unstimu-
lated cells to the tail data from stimulated cells. Many details of the analysis are given
in Appendix D as they are very similar to what was done for the unstimulated data. In
particular, the autocorrelation coefficients in the tails (see Table 15) are sufficiently
small to justify assuming the jumps in the tails are independent. As before, we will
focus on the jump lengths. For easy comparison, we include information about the
unstimulated cells in some tables.

The analyses of the jump angles and components are given in Appendix D and
give essentially the same results as for the jumps from unstimulated cells, that is, the
jump components are not normally distributed, but the jump angles are uniformly
distributed. As before, the PDFs of the jump lengths cannot have a simple chi or
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Fig. 12 Tail jump lengths PDFs with the general chi, general Weibull and power-law fits

simple Weibull distribution, so we fit the distribution of the jump lengths with the
general chi (19), general Weibull (20) and power-law (21) distributions. These fits
are shown in Fig. 12 and the fit parameters are given in Table 11. This figure and the
mean square errors confirm that, as before, the power-law fit is the best. The shape
parameters d , k, and α are the most important. There is no apparent trend in the
values of these parameters as a function of the stimulus. However, the values of d are



Insights into Cell Membrane Microdomain Organization from Live Cells 1891

Fig. 12 (Continued)

smaller than the values of k, and the values of k are smaller than the values of α. If
we estimate the fractal dimension using the chi distribution, the d is usually between
about 5/4 and 4/3.

For power laws, the exponent must satisfy γ > 1 and if the analytic distribution
function is to have a finite moment of order k, then it must be the case that γ − k > 1.
Thus, if γ < 3, the analytic distribution function does not have a finite second moment
and consequently the distribution is termed anomalous in the sense of being super
diffusive (Saxton and Jacobson 1997; Metzler and Klafter 2000; Zaslavsky 2002). In
the data sets A and B, there are five cases that meet the conditions for being super
diffusive. As the cell has finite size, we cannot have superdiffusion due to large jumps.
But still, when γ ≤ 3, the sizes of the intermediate length jumps do scale as a power
law as in anomalous diffusion. We comment more on this in Sect. 6.

5.3 Summary

For the stimulated data, we break up the time series into three parts, the motion before
stimulation, a period after the stimulus is added where the motion slows, and the tail
where the motion resembles that for the unstimulated cells but is slower. We classify
the stimuli into weak (0.001,0.010 µg/ml) and strong (0.100,1.000,10 µg/ml). The
effects of the weak stimuli are small and difficult to quantify because of the noise in
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the data. If some parameter depending on the stimulus has a trend for s < 10 µg/ml,
then this trend typically, but not always, reverses slightly for s = 10 µg/ml.

We use curve fitting to study the slowing of the diffusion and then use the tech-
niques developed in Sect. 4 to study the motion in the tails. For the strong stimuli,
the mean lifetime of the change from the motion in unstimulated cells to the station-
ary motion in the tails of the time series decreases rapidly with increasing stimulus.
The transition between the fast and slow states is rapid, occurring in a few to tens of
seconds. For the tails, we also divide the jumps into short, medium and long and see
that, as time increases, the number of short jumps increases significantly while the
number of long jumps decreases.

For times that are in the tails of the data, the motion slows with increasing stimulus,
but has a slight increase for stimulus 10.000. The jump components in the tails are
not normally distributed and the normal fits to the PDFs of the components of the
jumps imply that there is a higher proportion of short jumps than in the data from
unstimulated cells. As before, the jump angles are uniformly distributed. For the data
from stimulated cells, especially for the stronger stimuli, the power-law fits to the
jump sizes is significantly better that the general chi or general Weibull. The values
of d for the chi distribution suggest that the motion of the QDs can be modeled as
diffusion in a fractal space of dimension between 5/4 and 4/3.

A striking aspect of the tails for strongly stimulated cells is that their statistics do
not change significantly as a function of time, suggesting that nothing that signifi-
cantly affects diffusion on the membrane has happened in the last two minutes of the
experiments.

6 Discussion

Our results have important implications for improving our understanding of mem-
brane organization and dynamics. Previous high-resolution electron microscopy ex-
periments have shown that the extent of receptor clustering increases with increasing
stimulus (Andrews 2011; Wilson et al. 2002; Seagrave et al. 1991). In Espinoza et
al. (2012), we used hierarchical clustering and dendrograms to improve the quantifi-
cation of clustering observed using TEM methods. The new dynamic data confirm
that receptor mobility decreases dramatically under conditions that support the for-
mation of larger clusters of crosslinked receptors (Andrews et al. 2009). However,
the crosslinked receptors are not all strictly immobile since long and medium sized
jumps have a significant presence in the tails of the data sets. The continued pres-
ence of longer jumps could reflect the transient release of QD-IgE-FcεRI complexes
within the clusters from their DNP-BSA tether or it could also be that not all receptors
join a crosslinked cluster. The increase in short jumps suggest that the tethers remain
somewhat flexible, enabling limited mobility even in highly crosslinked IgE-FcεRI
complexes or the whole cluster could be moving in short jumps.

In Sect. 3, we showed how to apply time-series analysis to understand the motion
of quantum dot-labeled proteins in the cell membrane. We emphasize analyzing the
jumps in the data as this gives access to the information about the smallest spatial and
time scales supported by the data. We also show how to compensate for the blinking
of the quantum dot labels.
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Table 12 Paths, identified by the stimulus added and track number, with the largest number of time steps
(nts) for the two data sets, A and B. MDX (MaxDistX) and MDY (MaxDistY) are the lengths of the sides
of the smallest rectangle containing the path

Stimulus A B

Track Nts MDX MDY Track Nts MDX MDY

0.000 10503 1042 8328 3959 9108 966 2027 3277

0.001 659 1918 497 415 2023 867 1639 2457

0.010 951 752 3507 3678 1109 911 3881 1599

0.100 573 988 502 317 1040 1362 1187 2102

1.000 293 1363 250 328 161 1616 1383 786

10.000 1484 1615 654 766 1721 1137 381 538

Table 13 The power-law decay
for the on and off times of the
QDs for data sets A and B

Stimulus A B

On
p1

Off
p2

On
p1

Off
p2

0.000 1.27 1.02 1.26 0.89

0.001 1.33 1.00 1.26 0.92

0.010 1.29 0.96 1.29 0.94

0.100 1.32 0.95 1.28 0.92

1.000 1.39 0.98 1.24 0.91

10.000 1.36 0.94 1.31 0.93

In Sect. 4, we showed that it is reasonable to model the jumps between succes-
sive movie frames as ergodic stationary IID time series. Next, we showed that the
jump components are not normally distributed, but the jump angles are uniformly
distributed, therefore the jump lengths cannot have a simple chi or Weibull distribu-
tion. We then fit the jump lengths distribution with general chi, general Weibull and
power-law distributions. The best fit was given by the power law, but all fits were
quite good. The fit by the chi distribution suggests viewing the motion of the recep-
tors as diffusion in a fractal space of dimension d < 2. By comparing the general chi
and Weibull fits to the simple chi and Weibull distributions, we see that there is an
excess of jumps under 70 nm, again implying that there are significant barriers to the
diffusion at scales much less than 70 nm. Importantly, the distributions of the jump
lengths are smooth, implying that barriers to the diffusion exist at all scales from a
few tens of nanometers up to hundreds of nanometers. This implies that the barriers
to normal diffusion do not have any special size.

In Sect. 5, the motion of the receptors in stimulated cells is divided into three
types: the same motion as in unstimulated cells up to the time when the stimulus is
added, a slowing of the motion, and a tail of stationary motion like that in unstim-
ulated cells, only slower. We also divide the stimuli into two categories, weak and
strong. For weak stimuli, the statistics of the motion tends to be noisy. For strong
stimuli, the motion slows rapidly (in a few seconds to tens of seconds) and then has a
long tail of stationary motion. The stationary motion implies that nothing important
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Fig. 13 Data set A: tracks with the longest paths

happens to the diffusion for two minutes starting shortly after stimulation. Again, the
chi distribution d parameter for the tails suggests that diffusion is taking place in a
fractal space of dimension d < 2. For strong stimuli, many of the quantities show a
trend, consistently increasing or decreasing for increasing stimuli. On the other hand,
some quantities show a more complex pattern. When going from s = 0.1 to 1.0, the
quantity decreases, but when going from s = 1.0 to 10.0, the quantity increases some,
but does not return to the level at s = 1.0 (concave up). The other possibility is the
reverse: when going from s = 0.1 to 1.0, the quantity increases, but when going from
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Fig. 14 Data set B: tracks with the longest paths

s = 1.0 to 10.0 the quantity decreases some, but does not return to the level at s = 1.0
(concave down). We do not have an explanation for these reversals.

The time-series analysis in this paper and the previous cluster analysis (Espinoza
et al. 2012) of the biological data has set the stage for further exploration of tracking
data that may improve the understanding of the organization of the cell membrane
and its impact on the biology of the cell (Cebecauer et al. 2010). It is important that
the results for the time tst for the motion to become stationary are consistent with
the cluster analysis which shows that after 1 min, a fraction of the receptors forms
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Fig. 15 The longest segments for data set A

clusters while a significant number remain unclustered, but more of the receptors are
in clusters as the stimulus increases. The model will not use normally distributed
jump sizes, but rather use a power-law distribution like that discovered in this paper.

It is important to have good estimates for the errors in the positions of the QDs
(Destainville and Salome 2006; Wells et al. 2010; Savin and Doyle 2007), the most
important of which are the localization error in measuring the position of a stationary
QD, and the time averaging of the position of the quantum dot due to the camera
collecting photons for essentially the full frame, in our case 1/20 s. Additionally, the
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Fig. 16 The longest segments for data set B

QD can be displaced vertically. For our data, the localization errors for the centers
of the QD have been estimated at 50 nm in Andrews et al. (2008), Andrews (2011)
for a QD similar to QD625 and a faster frame rate of 33 per second. These error esti-
mates are based on fitting the mean squared displacement which may be confounded
by the algorithm that builds paths out of segments. Also, the faster frame rate would
increase the errors. This result is inconsistent with our measurements of the jump
component size distributions, that is, if the errors are mean zero normally distributed
with standard deviation of 50 nm, then the measured jump distribution would be the
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Fig. 17 The longest segments and their different jump lengths for data set A

convolution of the error distribution and the true jump distribution. Such a convolu-
tion would result in a measured distribution the would be close to normal, contrary to
our finding of far from normal distributions.

We have developed two new methods for estimating the errors in the positions of
the quantum dots that are based only on data from two successive time frames (there
is no fitting) and are of the hidden Markov type. For simulated data, these methods
produce excellent results for large errors, but unexpectedly, noisy results for small
errors. Further work is needed for estimating small errors, but the results for our data
are consistent with the errors being smaller than 20 nm.
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Fig. 18 The longest segments and their different jump lengths for data set B

An important problem in interpreting our results is that the QD is attached by a
flexible link to the receptor, which affects the interpretation of the jump lengths. We
also need a more realistic biological interpretation of the fact that the jumps are not
normally distributed. One possibility is that the diffusion is anomalous. Following
the discussion in review of anomalous diffusion (Metzler and Klafter 2000), there are
three possibilities: normal diffusion, superdiffusion and subdiffusion. Superdiffusion
is characterized by having a large excess of big jumps, which we do not see in our
data. If we did see this, the more likely explanation would be that directed motion is
involved, for example, motion along actin or microtubules. A more likely alternative
is that the motion is subdiffusive, that there is a large excess of long pauses in the
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Fig. 19 PDFs of all the jump lengths for the data sets A and B

Table 14 Tail data sets A and B: stimulus s, mean, standard deviation and mean zero test for the x and y

jump components of the PDFs shown in Figs. 20 and 21

s Jumps x y

μx σx μx/σx μy σy μy/σy

A 0.001 80,522 −0.05 80.9 −0.0006 −0.09 81.9 −0.0011

0.010 27,475 0.82 78.8 0.0104 0.00 80.0 0.0000

0.100 34,810 0.05 59.4 0.0008 0.09 60.4 0.0015

1.000 47,662 0.31 49.5 0.0062 0.03 47.9 0.0006

10.000 81,890 −0.20 56.9 −0.0036 0.05 57.6 0.0009

B 0.001 56,017 0.04 83.4 0.0004 0.44 82.2 0.0054

0.010 31,341 0.33 77.6 0.0042 −0.16 78.2 −0.0020

0.100 22,822 −0.97 56.0 −0.0173 0.08 58.1 0.0014

1.000 94,559 −0.08 45.4 −0.0018 −0.40 45.9 −0.0087

10.000 121,932 0.01 54.7 0.0001 −0.21 54.1 −0.0038

motion. Again, we do not see this in the data. Although diffusion in fractals is a
special case of subdiffusion, we see no evidence of very long delays. The remaining
possibility is that the motion is regular diffusion for which the Central Limit Theorem
implies that the positions of many walkers starting at the same initial position will
become normally distributed after some time. Our results and a preliminary analysis
of multiple jump data indicates that this is not the case. Further work is required to
resolve these issues.

In summary, the mast cell membrane complexes IgE-FcεRI are in continuous ran-
dom motion as can be seen from the data from unstimulated cells. The movement is
restricted, though, by a continuous distribution of barriers which reduces the fractal
dimension of the diffusion to a value d < 2. Adding the antigen causes the complexes
to slow down significantly (by about half for the strong stimuli from the point of view
of jump length standard deviations or equivalently, by about one fourth from the point
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Table 15 The autocorrelation coefficients, Ck (k = 0, . . . ,5), for the tails. Recall that C0 = 1.0 because
the coefficients are normalized by the square of the standard deviation

s tst C1 C2 C3 C4 C5

A 0.000 0.00 0.085 −0.048 −0.024 −0.016 −0.008

0.001 10.20 0.038 −0.056 −0.025 −0.019 −0.016

0.010 101.10 0.061 −0.058 −0.035 −0.021 −0.018

0.100 82.40 −0.017 −0.044 −0.014 −0.017 −0.003

1.000 30.85 −0.090 −0.043 −0.025 −0.014 −0.004

10.000 14.60 −0.021 −0.045 −0.023 −0.014 −0.008

B 0.000 0.00 0.077 −0.050 −0.026 −0.015 −0.010

0.001 81.50 0.057 −0.048 −0.027 −0.016 −0.011

0.010 107.65 0.023 −0.066 −0.038 −0.012 −0.004

0.100 120.05 0.010 −0.044 −0.011 −0.018 −0.012

1.000 30.85 −0.064 −0.033 −0.020 −0.009 −0.007

10.000 20.15 −0.040 −0.048 −0.026 −0.012 −0.007

Table 16 The p-values for the
two-sample Kolmogorov–
Smirnov test for the jump angles

Stimulus A B

0.0010 0.8110 0.0774

0.0100 0.2184 0.3198

0.1000 0.2184 0.0657

1.0000 0.1238 0.1436

10.0000 0.0909 0.8970

of view of diffusion coefficients). In addition, the slowdown occurs rapidly, on the or-
der of 5–20 seconds for the strongest stimuli. We believe that this rapid slowdown is
primarily due to protein aggregation as other possible causes such as the binding of
adaptor molecules and/or recruitment into endocytic compartments (clathrin coated
pits) which could significantly alter receptor mobility are downstream events that
would occur at later times than those represented in the tracking data. Finally, even
though many of the complexes in the tails of the tracking data are in dimers or clus-
ters, the complexes still undergo significant motion, but now the barriers to movement
restrict the motion further, lowering the fractal dimension even more.
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Appendix A: Examples of Long Paths and Segments

In this appendix, we extend the information about the longest paths introduced in
Sect. 2. We first show the longest paths, then the longest segments, and then replot
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Fig. 20 Distributions and their normal fits of the jump components in the tails of data set A

these tracks and color code the jumps by length. The main point is to show how
highly variable the paths are.

In Table 12, we summarize some information about longest paths. The parameters
MDX (MaxDistX) and MDY (MaxDistY) give the size in nm of the smallest rectan-
gle that contains the path. Figures 13 and 14 show the longest path for each stimulus
for the two data sets. The plot notation is the same as that used in Fig. 2. Recall that
a path is made up of segments where the QD is on, separated by segments where the
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Fig. 20 (Continued)

QD is off, and consequently these figures also illustrate the blinking of the QDs. Note
that the QDs can be on or off for a long time.

Figures 15 and 16 show longest segment for each stimulus. Recall that the QD is
on for all of the points in a segment. Each segment is enclosed by its convex hull. The
area of the convex hull is written in the form R2, so R is the length of the side of a
square with the same area.

In Figs. 17 and 18, we use different colors for the jump sizes L: blue for 0 ≤
L ≤ 70 nm, green for 70 < L ≤ 190 nm, and red for 190 < L ≤ 346 nm. From these
figures, we can see how the number of jumps less than or equal to 70 nm (blue)
increases as the stimulus increases, while there are very few of the longest jumps.

Appendix B: QD Blinking Times

It is important for our analysis to understand that, due to the blinking of the QDs, very
few QDs are on at any given time step. The minimum, mean, and maximum of the
dots that are on at any given time are given in Table 2. Because only a few QDs are on
at a given time, statistics that are a function of time will be noisy. The lengths of the
QD on times are strongly dependent on the algorithm that connects dots at successive
time steps, while the off times are strongly dependent on the algorithm that connects
runs of on times. It is known that the on and off times of the QDs satisfy a power law
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Fig. 21 Distributions and their normal fits of the jump components in the tails of data set B

with a negative exponent of approximately 3/2 (Bachir 2006), so we fit the function
that gives the number of on and off times of a given length by

on(i) = q1i
−p1 , off(i) = q2i

−p2 .

It is not expected that the on times will be affected by the stimulus, but it is possible
that the off times are affected as the motion is slower and thus it may be easier to
estimate where a dot that has turned off will turn on. The power p1 for the on times is
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Fig. 21 (Continued)

approximately 4/3 for all conditions (see Table 13). This is somewhat slower than that
given in (Bachir 2006). The power p2 for off times is approximately 1 (see Table 13).
Note that it is common to divide the on or off times by the total number of times so
that one obtains a probability distribution. However, for this to work, the power must
be greater than 1. In our case, the number of off times is bounded by the number of
time steps in a track, so with a power less than 1, we still get a probability distribution.

In the off times data, the off times are zero after 32 time steps. This is caused by
the path construction algorithm, which connects segments of on times, having a limit
of 32 off times in between the on times. Because of this, the power-law fit was made
using the first 32 data points.

Appendix C: Problem with Large Jumps

During our analysis, we noticed a problem with the large jump lengths. We used
the material in Sect. 3.6 with 500 bins to estimate the PDF of the jump lengths and
display these in Fig. 19. We see that the data analysis algorithms that construct the
paths introduce a dramatic reduction in the number of jumps at 346 nm. Therefore,
in our analysis we discarded all jumps bigger than 346 nm. This is a very small
percentage of the total data: 2,069 jumps or less than 0.5 % of the data for data set A;
and 1,668 jumps or less than 0.5 % of the data for data set B.



1906 F.A. Espinoza et al.

Fig. 22 Data angles and generated random angles in the tails of data set A

Appendix D: Analysis Details for the Tail Data

In this appendix, we provide some of the details about the tail data that was not
discussed in Sect. 5. We begin by showing that the tail jump components can be
modeled as mean zero. We next compute the autocorrelations coefficients to support
modeling the jumps as independent. Thus, as with the unstimulated data, we will
model the tail jump data as IID and mean zero and estimate the statistics for the data
in the tails using the formulas in Sect. 3.4. Next, we give more details concerning the
PDFs of the tail jump components and the jump angles.
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Fig. 22 (Continued)

In Table 14, we expand on information about the statistics of the tail jump com-
ponents first presented in Table 9. Note that the dimensionless means μ/σ are small,
which justifies modeling the tail data as mean zero. Also, note that the standard de-
viations σx and σy decrease with increasing stimulus except for the slight increase at
stimulus 10 µg/ml for both data sets.

Table 15 gives the first six autocorrelation coefficients for the tail data. We include
the data for the unstimulated case for comparison. The second column is the stimu-
lus s. The third column is the time in seconds when the tail data starts. The remaining
columns are the autocorrelation coefficients. C0 = 1 because the coefficients are nor-
malized by the square of the standard deviation (variance) and thus are dimensionless.
For both the A and B datasets, C1 goes from positive to negative as the stimulus in-
creases. For each k > 1 the coefficients are essentially independent of the stimulus
with the exception of one value in data set B with s = 1.000 and C4 = −0.009. With
three exceptions, the coefficients slowly decrease in size with increasing k ≥ 2. The
behavior of C1 is quite different from the coefficients with k ≥ 2.

In Figs. 20 and 21, we display the PDFs of the jump components in the tail data
along with their fits by mean zero normal distributions. The PDFs of the jump com-
ponents in the tails were found by dividing the interval −346 ≤ Δx,Δy ≤ 346 into
500 equal subintervals that were used to bin the components. The mean and standard
deviation of the jumps were estimated using (18). The normal fit is given by a mean
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Fig. 23 Data angles and generated random angles in the tails of data set B

zero normal PDF with the same standard deviation as the data that are given in Ta-
ble 14. As with the unstimulated data, the plots in these figures indicate that the PDFs
are not normally distributed which is confirmed by the two-sample Kolmogorov–
Smirnov test. In all cases, we observe that for approximately |x|, |y| < 50 nm, there
is an excess of short jumps compared to the normal distribution and that this excess
is bigger than in the unstimulated data. For approximately 50 < |x|, |y| < 190 nm,
there are fewer jumps than in a normal distribution. Note that a bound B on |x| and
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Fig. 23 (Continued)

|y| corresponds to a bound of
√

2B on the jump size r , so 50 nm in the components
corresponds to approximately 70 nm for the total jump lengths.

To analyze the jump angles, as before, we divide [−π,π] into 500 bins and then
bin the angles and compute their PDFs, which are displayed in Figs. 22 and 23. As
with the unstimulated data the mean angle is 0.1592 as is true for the uniform dis-
tribution which is equal to π/2. The two-sample Kolmogorov–Smirnov test gives H

of zero under all stimuli for a confidence value of 0.0001, so we cannot reject the
null hypothesis that the angles are uniformly distributed. The asymptotic p-values
shown in Table 16 confirm this. This is very strong support for modeling the angles
as uniformly distributed.
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