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13 Abstract—Initiation and propagation of cell signaling
14 depends on productive interactions between signaling pro-
15 teins at the plasma membrane. These diffusion-limited
16 interactions can be influenced by features of the membrane
17 that introduce barriers, such as cytoskeletal corrals, or
18 microdomains that transiently confine both transmembrane
19 receptors and membrane-tethered peripheral proteins. Mem-
20 brane topographical features can lead to clustering of
21 receptors and other membrane components, even under very
22 dynamic conditions. This review considers the experimental
23 and mathematical evidence that protein clustering impacts
24 cell signaling in complex ways. Simulation approaches used
25 to consider these stochastic processes are discussed.

26 Keywords—Clustering, Spatial stochastic simulations, Cell

27 signaling.
28

2930 INTRODUCTION

31 Cell signaling, used for both intracellular and
32 intercellular communication, is essential for the heal-
33 thy physiological functioning of multi-cellular organ-
34 isms. Ligand binding to a transmembrane receptor
35 triggers an intracellular signaling cascade that results
36 in altered cell behavior. The proper integration of
37 different environmental signals is critically important
38 to many biological processes, including cell sur-
39 vival, differentiation, proliferation, and migra-
40 tion.10,39,42,49,85,89 Aberrations in signal transduction
41 have been implicated in numerous pathologies,
42 from allergy and asthma to many different

43cancers.10,15,29,37,39,49,75,81,89 Signal transduction path-
44ways have therefore been studied extensively, and
45many drugs developed to target them.10,22,29,49,75,81

46Knowledge of the structure of the plasma mem-
47brane and of signaling processes continues to improve,
48due to advances in experimental techniques and
49imaging technologies.46,84,87 There is considerable evi-
50dence for the concept that the cell membrane is com-
51partmentalized into microdomains, such as protein
52islands88 and lipid rafts.56 Receptor clustering in small
53or large aggregates (illustrated schematically in Fig. 1)
54at discrete locations has been noted in many cell
55types,1,6,31,39,66,73,89 prompting intense interest in roles
56for membrane microdomains in signal propagation
57and preliminary mathematical studies to understand
58both formation of clusters and their role in cell sig-
59naling.8,17,18,21,35,36,48,63,76,77 There is general agree-
60ment that the composition of these microdomains is
61quite heterogeneous and, further, that their stability is
62influenced by the dynamic interactions of the cortical
63cytoskeleton with membrane proteins and lipids. The
64cytoskeleton also limits diffusion of membrane con-
65stituents by forming ‘‘picket fences’’ and ‘‘corrals.’’43,72

66The role of these membrane features in promoting or
67limiting protein–protein interactions remains contro-
68versial, since there is strong potential to both enhance
69and inhibit signaling.3,17,55,58 To help resolve these
70issues, several groups are developing spatially realistic
71mathematical simulations of receptor motion, aggre-
72gation/clustering, and activation in the cell membrane.
73It is important to note that parameters for these
74mathematical models rely on powerful new experi-
75mental techniques. High resolution microscopy
76techniques, such as transmission electron microscopy
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77 (TEM) and photoactivation light microscopy (PALM),
78 have been applied to map the spatial distribution of
79 signaling molecules in fixed cells.47,88 These snapshot
80 images of protein distributions can be supplemented
81 with powerful new live cell imaging approaches,
82 including fluorescence resonance energy transfer
83 (FRET), fluorescence lifetime correlation spectroscopy
84 (FLCS) and single particle tracking (SPT) experi-
85 ments.46 These techniques can generate key informa-
86 tion regarding the kinetics of protein–protein
87 interactions, including rates of dimerization, size of
88 receptor aggregates, and changes in diffusion proper-
89 ties.50 These rich data sets support the development of
90 more accurate and detailed mathematical models, that
91 in turn improve understanding of biological results.

92 Key Concepts and Definitions Relevant
93 to the Consideration of Protein Clustering
94 in the Plasma Membrane

95 In this brief review, we focus attention on the
96 mathematical simulation of protein clustering in the
97 plasma membrane, an initial step in many signaling
98 pathways. The protein species considered may be a
99 surface receptor, that is triggered by binding to

100 an extracellular ligand, or could be an intracellular

101signaling partner, such as an adaptor protein or enzyme
102that propagates signaling through the cell interior. We
103define clustering as the non-random spatial distribution
104of a membrane species, which can be observed and
105experimentally validated through modern technolo-
106gies. ‘‘Snap-shot’’ images of membrane proteins often
107capture some level of clustering even before the onset
108of ligand binding to receptors or active signaling.89 We
109hypothesize that these basal levels of clustering arise
110from brief, non-productive interactions among pro-
111teins as they encounter one another while diffusing in
112the plasma membrane or when proteins are transiently
113co-confined in a raft, island or corral (Fig. 1). Thus
114clustering in this sense is not synonymous with oligo-
115merization, which reflects the direct and measurable
116interaction between membrane components. It is
117important to point out that stable oligomers cannot be
118distinguished from unstable clusters in imaging tech-
119niques using fixed cells, such as TEM and PALM.
120However, new imaging protocols can now accurately
121measure the dynamics of protein–protein interactions
122at the molecular scale.46 A recent example from our
123Center is the simultaneous SPT of pairs of EGFR
124molecules, each labeled by virtue of binding to EGF
125conjugated to different colors of quantum dot probes;
126only when two EGF-QD-bound receptors were both
127coincident and exhibited correlated motion, could they
128pass the stringent criteria for oligomerization.50 The
129concept of clustering becomes particularly important
130as we consider the data suggesting that the spatial
131proximity of proteins can promote protein–protein
132interactions, including oligomerization, by increasing
133the likelihood of productive collisions.

134Choosing the Right Modeling Approach

135Mathematical models constructed to date to study
136signal transduction pathways are of varied complexity.
137They can be classified conveniently as deterministic
138methods, in which inherent temporal and spatial fluc-
139tuations in diffusion and reaction rates are ignored,
140and stochastic methods, which attempt to capture
141these fluctuations (Fig. 2). The simplest modeling
142approach is to assume that the system of interest is well
143mixed, without any spatial concentration gradients,
144and describe the reactions by a system of ordinary
145differential equations (ODEs). The utility of ODE
146modeling is enhanced by systematic sensitivity analy-
147sis, which examines automatically changes in model
148behavior due to parameter variation.60,61 Such a
149deterministic, well-mixed approach continues to be
150widely used,77 and has produced useful results.7,61

151However, these approaches do not take into account
152either spatial inhomogeneities or stochastic fluctua-
153tions, which can be significant when the number of

FIGURE 1. Schematic representation of microdomains and
receptor clustering. Left: Cartoon representation of features
that can subcompartmentalize the plasma membrane,
including rafts or islands, and the cortical cytoskeletal net-
work. These features are highly dynamic, permitting rapid
exchange by diffusion. Right: Representation of the distribu-
tion of receptors (yellow, blue symbols) in and out of domains
(pink shapes) formed by these features. Arrows point to var-
ious states, including monomers, dimers, and aggregates.
Receptors that are transiently trapped in domains are locally
crowded (arrow, top right) and appear as clusters by imaging
technologies. This molecular crowding can be more pro-
nounced upon ligand stimulation, due in part to formation of
dimers and larger aggregates with decreased diffusive
mobility. This review considers the experimental and com-
putational evidence that molecular crowding influences
receptor dimerization/aggregation and recruitment of signal-
ing proteins.
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154 molecules in the region of interest is small. At a slightly
155 higher level of complexity, some spatial description is
156 provided by dividing the region of interest into sepa-
157 rate well-mixed compartments. Additional ODEs are
158 needed to describe inter-compartmental species trans-
159 location reactions, thus mimicking spatial movement.
160 These well-mixed, ODE-based continuum pathway
161 models41 were expanded to include spatial inhomoge-
162 neity9,71 by solving partial differential equations
163 (PDEs) that include molecular diffusion effects. Sto-
164 chastic methods that assume spatially well mixed sys-
165 tems have also been developed to account for temporal
166 fluctuations.27,45 Stochastic PDEs include both spatial
167 information and temporal fluctuations. The most
168 detailed, and thus most complex, models are fully
169 spatial, stochastic methods that track the movement of
170 individual molecules.4,11,17,18,30,35,36,63,78 However, the
171 computational burden increases rapidly with increas-
172 ing complexity of the modeling approach. Figure 2
173 summarizes the various modeling approaches and their
174 range of applicability.
175 Mathematical simulation of events in the plasma
176 membrane faces unique challenges. Membrane

177proteins are constantly undergoing random motion in
178the plane of the membrane, where the diffusion rate is
179influenced by the environment, such as hindrance by
180microdomains, and thus varies both spatially and
181temporally. Optimally, the spatial location of every
182protein needs to be predicted, in order to capture
183clustering imposed by membrane topography and to
184predict the outcomes of both transient and prolonged
185protein–protein binding events. Fully spatial, stochas-
186tic methods offer capabilities that can capture accu-
187rately the dynamics of these events, but can be
188associated with prohibitively high computation cost.
189Novel hybrid approaches show promise for solving
190some of these computational challenges.
191Finally, this section would not be complete without
192introducing the unique power of rules-based
193approaches.20,33 Here, molecular interactions in sig-
194naling networks are treated as systems of encoded
195rules. Molecules are represented as structural objects
196that have modular domains and associated states rep-
197resenting conformations or covalent modifications of
198these domains. Importantly the input files and model
199specification blocks are compatible with multiple types

FIGURE 2. Classes of mathematical models for molecular processes in cells and the scales at which they are applicable to
signaling processes. A possible quantitative guide is the size of the largest element that can be treated as spatially homogeneous
(horizontal axis) and the typical number of molecules of one species in the element (vertical axis). The suggested spatial resolution
is determined by the size of the biological elements of interest and current computational capabilities. Spatially resolved models
are resource-intensive, and are therefore generally applied to small subsystems. Cell-level models of large signaling networks are
typically well mixed; spatial Monte Carlo studies rarely scale beyond a few hundred nanometers. A promising approach for multi-
scale applications is a combination of compartment-based models at the large scales and fully spatial simulations focused on a
few important processes within small structural elements of the membrane. Temporal fluctuations arise largely from the discrete
and stochastic nature of the underlying molecular processes. The relative magnitude of temporal fluctuations (DN) decreases as
the number of particles increases. The discrete nature of the particle number can thus be ignored when N is significantly greater
than 1. That is, deviations from the expected average behavior can be neglected when the expected magnitude of the fluctuations
is small compared to N.
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200 of computational approaches, including coupled
201 ODEs that result in deterministic solutions of reaction
202 kinetics as well as stochastic methods.

203 APPLICATIONS IN SPECIFIC SIGNALING
204 PATHWAYS

205 Sections below briefly summarize mathematical
206 models that have been developed to study signal
207 transduction pathways, with emphasis on methods
208 developed by our group and others to capture the
209 influence of clustering and other spatial aspects. We
210 focus on three representative signal transduction
211 pathways (EGFR, Ras/MAPK, and GPCR) where
212 protein clustering has been implicated, and on the
213 modeling approaches used to approach this unique set
214 of challenges.

215 Our Group’s Focus: Spatial Aspects of Signaling
216 Through the Epidermal Growth Factor Receptor

217 A member of the ErbB family of plasma membrane
218 receptors, EGFR is critically important to many bio-
219 logical processes, including embryonic development
220 and carcinogenesis.10,39,89 Upon binding any one of
221 several ligands, including EGF, the ErbB receptors
222 homo- or hetero-dimerize. Dimerization is followed by
223 transphosphorylation of tyrosine residues in receptor
224 cytoplasmic tails, which enables recruitment of
225 cytosolic signaling proteins. The reader is referred
226 to Figs. 2 and 3 in the article by Telasco and

227Radhakrishnan74 within this same issue, for diagrams
228of EGFR/ErbB1 dimerization, phosphorylation, and
229adaptor protein recruitment. Subsequently, these
230complexes activate many different signaling cascades,
231including the Ras-MAPK pathway discussed in the
232next section.
233There exists considerable experimental evidence for
234preexisting clusters of resting EGFR (Fig. 3) and for
235dynamical changes after addition of ligand.1,6,39,66,73,89

236We have built simulation platforms at different levels
237of complexity, in order to evaluate the impact of
238EGFR clustering in the plasma membrane.

239Approaches and Methodology

240Our first attempt to develop a spatial model of the
241EGFR pathway was a simple compartmental model
242that accounted for receptor density differences
243observed in the plasma membrane, with some regions
244having high-receptor density and others displaying
245low-receptor density.52 The focus of this study was to
246explore whether the added computational complexity
247associated with spatial modeling was justified. Our
248initial goal was to determine if the non-uniform
249receptor distribution in the cell membrane could
250account for the experimentally observed, concave-up
251Scatchard plot for binding of EGF ligand to its
252receptor. We simply optimized the distribution of
253receptors into high- and low-density regions, and were
254able to determine the parameter space that allowed for
255a concave-up Scatchard plot. This first attempt at
256compartmentalized spatial modeling showed that

FIGURE 3. Experimental results and mathematical model predictions of EGFR clustering. (a) Experimental evidence for EGFR
clustering in absence of ligand. Electron micrograph of gold particle-labeled EGF receptors in resting A341 cells (~2 million EGFR/
cell), reveals a non-random distribution and provides evidence for receptor co-confinement. (b) Spatial domain used in lattice-free
Monte Carlo simulation.35 The spatial domain simulated by the off-lattice Monte Carlo procedure was a square of area 2 lm2,
representative of a small region in the plasma membrane. This region was modified to include many islands or preferred domains
(the green rectangles within the membrane patch), to simulate the receptor-trapping microdomains seen in (a). Movement of
receptors into and out of the simulated microdomains over a time period of 30 s is indicated by the thin colored tracings. Receptor
trapping in the microdomains was reproduced mathematically by stipulating that receptors had a greater probability of entering
these regions than of leaving them. (c) Simulation predictions of receptor clustering in absence of ligand. The predicted particle
positions after 30 s of simulation time are indicated by the black dots. The Hopkins statistical test (inset) was used to test the
randomness of receptor distribution. The right shift of the distribution (compared to the random or normal distribution shown in
red) towards unity confirms the clustered nature of the receptors. The predicted receptor distribution compares well with the
experimental observation in (a). (d) Simulations using a coupled spatial/nonspatial stochastic algorithm (CSNSA) support the
conclusion that EGFR clustering promotes activation of the adaptor SOS. ODE models confirm this conclusion, using a fast
diffusion coefficient to override contributions from membrane spatial organization (from Hsieh et al.35 and Costa et al.17).
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257 accounting for the spatial organization of receptors
258 was highly valuable, and should be pursued, to enable
259 both qualitative and quantitative understanding of cell
260 signaling involving (at least) the EGFR.
261 This study convinced us of the utility of spatial
262 modeling of membrane-bound receptors and of its
263 importance in understanding cell signaling. We have
264 now accumulated extensive experience in developing
265 spatially realistic simulations of the cell membrane
266 and also addressed the initiation of signal-
267 ing.13,17,18,35,36,51–54 Next, we summarize our develop-
268 ment of lattice-based and lattice-free (or off-lattice)
269 methods, as well as our use of hybrid approaches.

270 Lattice-Based Monte Carlo (MC) Approaches

271 In lattice-based models, molecules are located at
272 discrete grid points in the spatial domain and diffusion
273 is restricted to movement to an unoccupied neighbor-
274 ing point. Lattice-based MC simulations have become
275 very popular in the physics, chemistry, materials,
276 and engineering communities, as they provide
277 spatio-temporal information at significantly reduced
278 computational cost, compared to off-lattice simula-
279 tions.5,14,16,28,90 The MC method is a coarse graining of
280 molecular dynamics (MD) simulations,5 because MD
281 is impractical for rare event dynamics, such as hopping
282 between deep minima of a potential energy surface.
283 The MC method stochastically solves an underlying
284 master equation using pseudo-random numbers, by
285 constructing the probability with which the various
286 states of the system have to be weighted according to a
287 Markov process. MC simulations can provide contin-
288 uous time information. Gillespie26,27 established the
289 foundations of time-dependency for chemical reactions
290 in a spatially homogeneous system. His approach is
291 easily applicable to arbitrary complex computational
292 systems, and is often referred to as the kinetic or
293 dynamic MC method. Despite important algorithmic
294 implementations (e.g., dependency graphs,25 lists of
295 neighbors, binary-tree search, etc.), MC simulations
296 are seriously plagued by (1) the presence of fast reac-
297 tions that occur in large biochemical networks
298 seen in biology and (2) the execution of one event at
299 a time.
300 Our Spatial Kinetic Monte Carlo (SKMC)
301 method52,53 utilizes a modified null-event, lattice-based
302 MC algorithm, as in Mayawala et al.18,54 The spatial
303 domain, representing a small region of the plasma
304 membrane, is a two-dimensional square lattice of side
305 ‘, divided into a large number of much smaller square
306 bins of side a (!‘). The SKMC algorithm consists of
307 first randomly selecting an occupied lattice site, and
308 then choosing either a successful (reaction or diffusion)
309 or unsuccessful (null) event, based on calculated

310probabilities. If a successful event is chosen, it is exe-
311cuted. The transition rate Cd

i!j, for diffusion of species
312from any site i (i.e., lattice point i) to a nearest-
313neighboring site j is defined as

C
d
i!j ¼

1

4
C
Dri 1# rj
! "

; j 2 Bi;

315315where Cd
¼ 4D=a2 and D is the diffusion coefficient of

316the species located at site i. The term Bi denotes the set
317of four possible nearest-neighboring sites to which
318diffusion can occur in two dimensions from site i.
319Because species are allowed to diffuse only to an
320unoccupied site, we define an occupancy function rj for
321each of the four nearest-neighboring sites, in order to
322simplify the procedure for computing the transition
323rate for diffusion. For any site k (=i or j), rk is set
324equal to 1 if the site is occupied, or to 0 if the site is
325unoccupied. The transition rate for a chemical reaction
326at site i, Cr

i , depends on the reaction type and is directly
327related to the standard reaction rate.
328The probability pxi of an event x (=r reaction or d
329diffusion) at site i is computed by using the relation

pxi ¼ C
x
i =Cmax

331331where Cmax is a normalization constant, defined as

Cmax ¼ 4
C
d

4
þmax

X

all forward reaction events

C
r

 ! !

þmax
X

all backward reaction events

C
r

 !0

333333where the multiplicative factor of 4 accounts for events
334occurring in the four directions of the two-dimensional
335square lattice. Finally, the time step Dt used to advance
336the simulation time is computed as Dt ¼ 1=Cmax.

337Rule-Based, Non-lattice Simulator

338Our non-lattice, stochastic simulator is an alterna-
339tive approach.35,36 In the lattice-free method, particles
340are not confined to discrete points in space but are
341randomly repositioned upon undergoing a diffusion
342event. Receptors and other proteins in the 2D mem-
343brane and 3D cytosolic space are represented by
344sphere-like particles with radii determined from
345experimental data and their coarse-grained molecular
346models. At each time step, species diffusion is simu-
347lated as Brownian motion (Fig. 3). In addition, species
348have the potential to react with spatially nearby spe-
349cies. This simulator was designed for flexible model
350development and deployment by a modularized and
351rule-based approach. It tracks the individual reactions
352of multistate molecules and accommodates complex
353situations.
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354 Hybrid Approaches

355 We continue to improve our basic SKMC algo-
356 rithm, leading to increased efficiency and speed of the
357 simulations. One significant advance was the coupling
358 of our lattice-based SKMC simulations on the cell
359 membrane to well-mixed stochastic simulations within
360 the cytosol.18 In Costa et al.,18 we describe the devel-
361 opment of an algorithm that couples a spatial sto-
362 chastic model of membrane receptors with a nonspatial
363 stochastic model of cytosolic reactions. Our novel
364 hybrid algorithm provided a computationally efficient
365 method to evaluate the effects of spatial heterogeneity
366 on the coupling of receptors to cytosolic signaling
367 partners. Results obtained using a compartmental
368 ODE method compared well with those generated with
369 our hybrid model. Thus, for sufficiently high receptor
370 copy number, the far simpler ODE model may be
371 adequate. However, for spatially inhomogenous sys-
372 tems where the receptors numbers are low, the hybrid
373 method was significantly superior to the ODE model.

374 EGFR Density, Through Clustering or Overexpression,
375 Influences Signaling Output

376 We have applied these methods to study the early
377 molecular mechanisms involved in EGFR signaling.
378 For example, we applied the lattice-based spatial sto-
379 chastic model of the plasma membrane to examine the
380 influence of cytoskeletal corral openings on EGFR
381 clustering.17 Clustering was shown to depend on both
382 receptor concentration and picket fence density. For
383 high picket fence densities, clustering increased with
384 increasing receptor concentration in the range exam-
385 ined. Conversely, low receptor concentrations com-
386 bined with small corral sizes inhibited clustering; at
387 normal to high receptor concentration, maximal clus-
388 tering occurred at an intermediate corral size
389 (~100 nm). These results indicate that both the number
390 of clusters and the average cluster size are likely to be
391 complex functions of receptor density and microdo-
392 main size. It follows that compartmentalization of the
393 plasma membrane could either inhibit or enhance sig-
394 naling, concepts that require further exploration.
395 The non-lattice, rules-based simulator allowed us to
396 explore the effect of EGFR overexpression and its
397 relation to carcinogenesis.35 We postulated that
398 increased receptor density in membrane microdomains
399 or protein islands might lead to more frequent inter-
400 actions between non-ligand bound receptors and,
401 further, that large numbers of these short-lived inter-
402 actions might explain EGFR signaling known to occur
403 even in the absence of ligand.6 One important aspect
404 was consideration of EGFR extracellular domain
405 conformation, based upon structural studies showing
406 that the resting EGFR is predominantly in a ‘‘closed’’

407conformation. Binding of ligand is proposed to stabi-
408lize the extended conformation and expose the dimer-
409ization arm. In our simulations, we assumed that the
410resting EGFR ‘‘fluxes’’ between the open and closed
411states, but spends 99% of its time in the closed state.
412This property translates to a low probability that two
413diffusing monomers will collide under conditions
414where both expose their dimerization arms and are
415therefore competent to form a complex. The 2D sim-
416ulation space included membrane microdomains that
417transiently trapped receptors (as in Fig. 3), setting up
418clusters undergoing dynamic exchange. Remarkably,
419at levels of receptors typical of most normal cells,
420co-confinement in membrane microdomains lowered
421the threshold for ligand-independent receptor dimer-
422ization but resulted in very modest signaling output.
423When the simulation space was populated with densi-
424ties typically seen in tumors with EGFR gene ampli-
425fication, which can express millions of EGFR per cell,
426the percent of activated receptors could exceed 10%
427with our parameter values. Clustering had little effect
428in these cases, since the overall density on the mem-
429brane was already very high.
430We have used both lattice and non-lattice models to
431consider how spatial aspects might affect the recruit-
432ment of signaling molecules to the phosphorylated
433EGFR tail.18,36 In Hsieh et al.,36 we also considered
434the combinatorial complexities associated with the fact
435that EGFR has multiple phosphorylation sites and,
436further, the fact that each phosphotyrosine site is
437capable of binding multiple partners. We used coarse-
438grained molecular docking simulations to show that
439steric hinderance can impose important constraints on
440the composition of adaptor proteins capable of dock-
441ing simultaneously on the EGFR tail. Modeling pre-
442dictions in Hsieh et al.36 were quantitatively consistent
443with experimental data for the kinetics of both EGFR
444phosphorylation and recruitment of adaptor proteins.
445Importantly, both papers provide mathematical support
446for the conclusion that clustering of receptors can
447amplify signaling by promoting sequential binding of
448adaptor proteins. These results provide confidence in
449our models, and have led to ongoing studies of other
450growth factor receptors that initiate signaling through
451dimerization, particularly VEGFR, as well the hete-
452rodimerizing members of the ErbB family. This field
453continues to advance, as demonstrated by the hybrid
454approaches of Radhakrishnan and colleagues74 that
455consider ErbB structural and diffusion properties using
456increasingly complex models. Additional aspects of cell
457surface topography, such as the induction of mem-
458brane curvature by endocytic adaptor proteins, are
459new concepts that will provide important insight into
460the control of signal transduction through the bio-
461physical principals of membranes.
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462 Work by Others: The Case of Signaling
463 via Ras/MAPK Pathways

464 The Ras superfamily consists of over 100 small
465 GTP-binding proteins (or GTPases), which respond to
466 various extracellular stimuli to regulate important
467 signal transduction pathways.81,85 These proteins,
468 which have low intrinsic GTPase activity, ‘‘switch’’
469 between active GTP-bound and inactive GDP-bound
470 conformations. The processes mediated by GTPases
471 include cell division, differentiation, apoptosis, and
472 migration, cytoskeletal reorganization, and intracellu-
473 lar protein trafficking.75 Abnormalities in these path-
474 ways are seen in various pathologies, including obesity,
475 diabetes, inflammatory diseases, cardiovascular dis-
476 ease, neurological disease, and cancer.15,75,81 Therefore
477 the pharmacological targeting of GTPases and/or their
478 signaling pathways is an active field.81

479 The Ras/Raf/MEK/ERK mitogen-activated protein
480 kinase (MAPK) pathway has been investigated exten-
481 sively, both in the clinic and the laboratory, and by
482 mathematical modeling.7,22,23,32,34,40,41,57,61,68,69,76,77,86

483 Activation of a number of receptors, including EGFR,
484 leads to guanine nucleotide exchange (dissociation of
485 GDP, gain of GTP) by membrane-tethered Ras,
486 thereby activating it. The activated Ras in turn acti-
487 vates Raf (Ras-associated factor), the first kinase in the
488 cascade. Subsequently, Raf activates MEK (MAPK/
489 extracellular signal-regulated kinase), which then acti-
490 vates ERK (extracellular signal-regulated kinase). The
491 translocation of phosphorylated ERK to the nucleus
492 and activation of transcription factors mediates many
493 cellular activities.
494 Numerous mathematical models have been devel-
495 oped to study this pathway.7,23,32,34,40,41,57,61,68,69,76,77,86

496 Much of this work uses compartmental models and
497 ODEs to follow the temporal evolution of activated
498 ERK, and does not consider clustering in the plasma
499 membrane. However, Tian et al.76,77 have mathemati-
500 cally evaluated various spatial aspects of Ras signaling,
501 including clustering in the plasma membrane. This
502 grouputilized ahybrid approach to simulate reactions in
503 the cell membrane and those in the cytosol, enabling
504 them to separate the contribution of the plasma mem-
505 brane structure to the signal. They combined the well-
506 mixed stochastic model of Gillespie26,27 to simulate
507 reactions in the membrane with an ODE model for the
508 cytosolic reactions. They assumed that the number of
509 RasGTP clusters was proportional to the EGF con-
510 centration, and these clusters served as platforms for
511 recruiting Raf to the plasma membrane for activation.
512 The lifetime of RasGTP clusters was assumed to be
513 normally distributed over a measured value. Plasma
514 membrane reactions, in addition to binding and acti-
515 vation of Raf byRasGTP clusters, included recruitment

516by activatedRaf of theKSR–MEK–ERKcomplex from
517the cytosol and activation ofMEKby activated Raf and
518of ERK (MAPK) by activated MEK. KSR (kinase
519suppressor of Ras) is a scaffold protein that facilitates
520MAPK activation by providing binding sites for
521assembly of the signaling complex. The recruitment of
522both Raf and the KSR–MEK–ERK complex was
523modeled as occurring through random collisions with
524the plasma membrane. With dissolution of a nanoclus-
525ter, all recruited proteins diffused back to the cytosol,
526where the activated MEK and ERK continued their
527roles. Using this model in conjunction with biological
528experiments, Tian et al.76 concluded that RasGTP
529clustering is essential for signal transduction.Moreover,
530theRasGTP clusters operate as sensitive switches in that
531they produce approximately the same levels of normal-
532ized activated ERK over a wide range of ligand con-
533centration. One possible explanation for this behavior is
534the establishment of locally high concentrations of
535recruited proteins and thus the spatial restriction of
536active ERKproduction toRasGTPnanoclusters, whose
537generation and lifetime are themselves strictly regu-
538lated.76 Tian et al.76 also concluded that the produc-
539tion of RasGTP nanoclusters in direct proportion to
540ligand concentration can ensure high fidelity of signal
541transduction.
542Subsequently, Tian et al.77 incorporated models for
543following the temporal evolution of RasGTP clusters
544in the cell membrane. In particular, they studied K-Ras
545clustering and how it is influenced by the protein
546Galectin-3 (Gal3). Previous experimental work had
547shown that Gal3 is a scaffolding protein recruited to
548the plasma membrane, where it is necessary for the
549formation of Ras nanoclusters.70 Their mathematical
550model77 considered the two species, membrane-bound
551RasGTP and Gal3, initially in the cytosol. Once Gal3
552is recruited by RasGTP, the RasGTP-Gal3 complexes
553are assumed to diffuse randomly in the plasma mem-
554brane and react with one another to form complexes of
555various sizes.
556To simplify the calculation procedure, Tian et al.77

557allowed for a maximum cluster size of ten. The various
558combinations of possible complexes resulted in a total
559of 27 species and 136 reactions in the plasma mem-
560brane. In agreement with our earlier observation, they
561concluded that spatial stochastic modeling of such a
562large system poses a considerable computational bur-
563den. Therefore they developed an ODE system to fol-
564low the temporal evolution of complexes of size 1–10,
565using a spatial stochastic model to only deduce colli-
566sion rates among the complexes.35,36 This determin-
567istic system was solved with a Runge–Kutta method
568suitable for stiff ODEs.60 The collision rates were
569obtained by initially placing RasGTP randomly in a
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570 square-shaped representation of the plasma mem-
571 brane. Recruitment of Gal3 produces the Ras–Gal
572 complex. These molecules were allowed to diffuse
573 randomly, and a collision was said to occur when the
574 distance between two molecules was less than the sum
575 of their radii. The collisions produced various combi-
576 nations of Ras–Gal complexes. When a nanocluster,
577 defined as a cluster consisting of five or more RasGTP
578 molecules, formed it was assumed to become immobile
579 in the plasma membrane. During the calculation pro-
580 cedure the total numbers of collisions giving rise to all
581 cluster types were tracked. At the end of the compu-
582 tational time period, the collision rate constants were
583 computed from the total numbers of collisions. Kinetic
584 rate constants for the ODE model were then derived
585 from the collision rate constants, by using a genetic
586 algorithm in conjunction with experimental data. The
587 validity of this deterministic ODE model was checked
588 with results generated with a stochastic simulation
589 algorithm.26 Presumably due to the large numbers of
590 proteins, the stochastic simulations predicted only
591 small fluctuations. This observation supports use of
592 deterministic models when the protein copy number is
593 high, in agreement with our observations.
594 Using this modeling approach, Tian et al.77 studied
595 clustering of K-Ras-GTP in the plasma membrane
596 arising from interactions with Gal3 for various KRas
597 and Gal3 copy numbers. The simulation time period
598 was sufficiently long for the system to equilibrate. The
599 time to equilibrate was approximately two minutes, an
600 important result because it is in good agreement with
601 the time period required for RasGTP loading in
602 response to stimulation.76 Their results also success-
603 fully reproduced the experimental results of Plowman
604 et al.59 that approximately 42% of the RasGTP were in
605 clusters and the average cluster size was approximately
606 7. Tian et al.77 also generated the equilibrium nano-
607 cluster number vs. size histogram. Their results showed
608 that nanoclusters with two to four molecules
609 accounted for only 2.1% of the RasGTP, whereas a
610 cluster size of 5 was the most prevalent. Nanoclusters
611 larger than 5 in size were progressively smaller in
612 number, approximately inversely proportional to the
613 size. The authors speculate that one possible reason for
614 the lowered incorporation of RasGTPGal3 complexes
615 into clusters of size 5 or larger is the remodeling of the
616 lipid environment of the cluster by the stable pentamer.
617 Their results also suggest that cluster formation is only
618 weakly dependent on RasGTP concentration, and is
619 determined by the Gal3 cytosolic concentration. Tian
620 et al.77 concluded that on the basis of their simulations
621 neglecting the formation of clusters with more than 10
622 RasGTP molecules is reasonable. Notably, this work
623 illustrates the difficulty of spatial modeling of systems
624 with large reaction networks.

625Work by Others: G-Protein Coupled Receptors

626The GPCRs constitute the largest family of trans-
627membrane receptors, consisting of five subfamilies.2,65

628These proteins, whose structure and function were
629reviewed recently by Rosenbaum et al.,65 are charac-
630terized by seven transmembrane spanning a-helical
631segments.2,24 They regulate many physiological func-
632tions such as vision, gustation, and olfaction.65,82

633Neurotransmitters, hormones, and environmental
634stimuli activate these pathways. GPCRs are also
635implicated in many human diseases, such as inflam-
636mation, retinitis pigmentosa, nephrogenic diabetes
637insipidus and Kaposi’s sarcoma.24,38,82,83 At present,
638most pharmaceutical drugs used by humans target
639GPCRs by serving as agonists or antagonists.21,82

640Many aspects of GPCR signaling are well estab-
641lished. In the classical view, binding of ligand to a
642GPCR induces a conformational change in the recep-
643tor. The activated receptor initiates guanine nucleotide
644exchange (GDP fi GTP) in its principal signaling
645partner, a heterotrimeric (abc) G-protein complex.
646Like ras, heterotrimeric G proteins are tethered to the
647cytosolic leaflet of the plasma membrane through
648covalently attached lipids, and assume an active state
649once bound to GTP. An additional step is required for
650heterotrimeric G proteins: the separation of the GTP-
651bound Ga subunit from the Gbc subunit, which dif-
652fuses into the cytosol. The subsequent activation of
653downstream effector proteins results in various distinct
654biological reactions.
655Recent work has focused on new aspects of GPCR
656signaling, such as the evidence that at least some
657GPCRs can form homo- or hetero-dimers.8,24,83 These
658dimers can interact further to form oligomers.21

659Although believed essential for signaling to occur, the
660dimerization mechanism is well characterized for only
661a few GPCRs.44 Due to the importance of GPCR
662signaling in healthy and diseased states, GPCR inter-
663actions, along with membrane organization, and their
664impact on signaling must be well characterized.
665Mathematical modeling is therefore being used
666increasingly to help unravel the intricacies of this
667pathway. A useful review of mathematical models that
668have been developed to study GPCR signaling is given
669by Linderman.48

670Brinkerhoff et al.8 used triangular lattice-based MC
671models to simulate receptor dimerization and activa-
672tion in a two-dimensional plane, examining how
673dimerization creates clusters of receptors. Their model
674demonstrates the applicability of MC methods to sys-
675tems with discrete reactions that are diffusion limited.8

676Randomly selected particles undergo either one of
677two possibilities at each time step: displacement in a
678random direction by a distance governed by the
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679 diffusion coefficient or a chemical reaction. Reaction
680 possibilities considered were receptor dimerization,
681 binding of ligand by receptor, receptor activation of G
682 protein and receptor phosphorylation. This group’s
683 simulations suggest that clustering arises through both
684 dimerization and cross talk between receptors as they
685 approach one another closely and are able to share an
686 effector. They also concluded that the resulting clus-
687 tering enhances signaling.
688 Fallahi-Sichani and Linderman21 investigated lipid
689 raft impact on GPCR signaling with a combination of
690 MC (stochastic) and deterministic models. A lattice-
691 based, kinetic MC model was used to establish the
692 effects of low-diffusivity rafts on receptor dimerization
693 and cluster dynamics. The stochasticity of the model
694 allowed for receptor distributions to be examined,
695 leading to parameter estimations for exploring the
696 effects on downstream signaling using an ODE model.
697 The fraction of plasma membrane covered by micro-
698 domains (rafts), which was varied from 2 to 30%, had
699 a significant impact on output. At 2% coverage,
700 microdomains amplified the overall response, but at
701 higher coverage the signal was attenuated. They con-
702 cluded that dimerization and lipid raft trapping
703 cooperatively control the extent and dynamics of
704 GPCR signaling.
705 Tolle and Le Novere78 developed an off-lattice,
706 Brownian diffusion-based stochastic model, which they
707 used to determine how alpha-amino-3-hydroxyl-5-
708 methyl-4-isoxazolepropionic acid receptor (AMPAR)
709 diffusion in the dendritic spine affects synaptic signaling,
710 specifically long-term potentiation (LTP).79 LTP, an
711 increase in synaptic strength, is a well-studied form of
712 synaptic plasticity, the ability to change the strength of
713 a signal.67,79 Tolle and Le Novere’s79 model accounts
714 for the dendritic spine membrane, membrane recep-
715 tors, and scaffolding proteins known to bind to
716 membrane receptors. The spatial domain representing
717 the plasma membrane of the synaptic spine was mod-
718 eled as a square of surface area corresponding to the
719 measured volume of the spine. This square was sepa-
720 rated into two different compartments or domains, in
721 order to account for the two physiologically different
722 portions of the plasma membrane: the post-synaptic
723 density (PSD) and the extra-synaptic membrane
724 (ESM). The PSD is a protein-rich region where
725 AMPARs are concentrated,67,79 while the rest of the
726 membrane is classified as the ESM.79 The transmem-
727 brane receptor movement within the ESM was mod-
728 eled with Brownian-type diffusion, while confined
729 motion was used to model the restricted diffusion
730 within the PSD. Simulation results indicate that ran-
731 domly placed receptors quickly localize to the PSD,
732 which Tolle and Le Novere79 suggest explains the
733 quick onset of LTP.

734CONCLUDING REMARKS

735This review specifically considers the mathematical
736modeling of protein clustering on the plasma mem-
737brane and the evidence that signal transduction can be
738enhanced by locally high concentrations of proteins
739that increase the probability of protein–protein inter-
740actions. This feature is especially important when the
741numbers of particles are small. When proteins are
742overexpressed, as in EGFR amplification in certain
743cancers, clustering may not be as significant.35 The role
744of membrane microdomains in signaling may be quite
745complex, since both inhibitory and stimulatory
746effects have been observed experimentally and theo-
747retically.3,17,55,58

748Mathematical modeling, in conjunction with bio-
749logical experiments, is providing new insights into the
750mechanisms that govern protein clustering in
751membranes and the resulting impact on signaling.
752Increasing experimental detail is being matched by
753increasingly complex models that account for previ-
754ously ignored biological subtleties.12,19,30,45,62,64,80 An
755important goal is to predict the functional responses of
756whole cells and cell-tissue systems, based upon inte-
757gration of spatial and temporally encoded signals from
758surface receptors. Achieving this goal will necessitate
759the development of efficient and accurate multi-
760scale simulation capabilities. A daunting challenge to
761mathematical modeling of cell signaling continues to
762be the scaling up of computationally intense methods
763developed for studying molecular behavior to enable
764predictive modeling at progressively more complex
765levels, from the cellular to the systemic.
766
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