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Abstract Cell biologists have developed methods to label membrane proteins with
gold nanoparticles and then extract spatial point patterns of the gold particles from
transmission electron microscopy images using image processing software. Previ-
ously, the resulting patterns were analyzed using the Hopkins statistic, which dis-
tinguishes nonclustered from modestly and highly clustered distributions, but is not
designed to quantify the number or sizes of the clusters. Clusters were defined by the
partitional clustering approach which required the choice of a distance. Two points
from a pattern were put in the same cluster if they were closer than this distance. In
this study, we present a new methodology based on hierarchical clustering to quantify
clustering. An intrinsic distance is computed, which is the distance that produces the
maximum number of clusters in the biological data, eliminating the need to choose
a distance. To quantify the extent of clustering, we compare the clustering distance
between the experimental data being analyzed with that from simulated random data.
Results are then expressed as a dimensionless number, the clustering ratio that facili-
tates the comparison of clustering between experiments. Replacing the chosen cluster
distance by the intrinsic clustering distance emphasizes densely packed clusters that
are likely more important to downstream signaling events.

We test our new clustering analysis approach against electron microscopy images
from an experiment in which mast cells were exposed for 1 or 2 minutes to increasing
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concentrations of antigen that crosslink IgE bound to its high affinity receptor, FcεRI,
then fixed and the FcεRI β subunit labeled with 5 nm gold particles. The clustering ra-
tio analysis confirms the increase in clustering with increasing antigen dose predicted
from visual analysis and from the Hopkins statistic. Access to a robust and sensitive
tool to both observe and quantify clustering is a key step toward understanding the
detailed fine scale structure of the membrane, and ultimately to determining the role
of spatial organization in the regulation of transmembrane signaling.

Keywords Dendrogram · Hierarchical cluster analysis · Dose response

1 Introduction

Cells communicate with the outside world through membrane receptors that recog-
nize one of many possible stimuli (hormones, antibodies, peptides, other cells) in the
extracellular environment and translate this information to intracellular responses.
Changes in the organization and composition of the plasma membrane are critical
to this process of transmembrane signal transduction (Lingwood and Simons 2010),
so there is great interest in understanding the organization of membrane proteins
in resting cells and in tracking their dynamic reorganization during signaling (Wil-
son et al. 2001, 2007 Oliver et al. 2004; Lagerholm et al. 2005; Xue et al. 2007;
Andrews et al. 2008; Lingwood and Simons 2010).

In this laboratory, high resolution information about the spatial organization of
membrane proteins is generated by transmission electron microscopy (TEM). We
stimulate cells for selected times, then rapidly rip and fix membrane sheets, cyto-
plasmic face up. We then label the cytoplasmic tails of specific transmembrane pro-
teins, as well as proteins that are recruited to membranes, using functionalized gold
nanoparticles (Oliver et al. 2004; Wilson et al. 2007). Sometimes the stimuli are also
tagged with electron-dense nanoprobes (nanogold, quantum dots) to identify acti-
vated receptors from the outside of the cell. After labeling, samples are processed for
TEM and spatial point patterns of the centers of the gold nanoparticles are generated
from the TEM images using image processing software (Baddeley and Turner 2006;
Zhang et al. 2006).

Previously, the Hopkins, and sometimes the Ripley, statistic (Zhang et al. 2006;
Tan et al. 2006) were used to characterize the distributions of membrane proteins
in resting and activated cells. These statistics are given by a plot of the statistic for
simulated random data to be compared with a plot of the statistic computed from
the experimental data (Oliver et al. 2004; Xue et al. 2007; Zhang et al. 2006). These
methods can distinguish between more and less clustered data. However, they do not
provide a straightforward quantitative measure of the extent of clustering. Many of
our figures will contain a plot of the Hopkins statistic to illustrate its consistency
with and difference from our new method. Examples of the biological data and the
Hopkins statistic are given in Figs. 10, 11, 12, 13, and 14.

For our biological data, the membrane proteins are receptors. To better under-
stand the receptor biology, it is important to know how many receptors are phys-
ically close to other receptors. Consequently, we need to find clusters based on
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the geometric distance. Already, clusters have been determined by choosing a clus-
tering distance d and putting two receptors in the same cluster if they are closer
than d ; see, e.g., Andrews et al. (2009). The problem is that it is not clear how
to choose a good clustering distance. In general, clustering approaches can be di-
vided into two types: hierarchical and partitional (Jain et al. 1999). The hierarchical
approach focuses on how the clusters vary with clustering distance, and thus pro-
vides an excellent foundation for us to build a method of computing an intrinsic
clustering distance dI based on the data and then using this to quantify the cluster-
ing. The hierarchical approach can be divided into single, complete, average, cen-
troid, median, and wards link methods. For this study, the single-link method best
matches the biology. If we set the clustering distance to ε and connect all of the data
points in each cluster, we obtain the ε-neighborhood graph (Cominetti et al. 2010;
Schaeffer 2007). For more information about alternative clustering approaches, see
Tan et al. (2007), Fan and Pardalos (2010). It may also be possible to use a partitional
approach to accomplish the same tasks, but this seemed more difficult than using the
hierarchical approach.

Here, we describe a method for computing a number that quantifies the amount
of clustering and apply it to the biological data described below. This permits the
easy comparison of the extent of clustering between experimental conditions. The
method was implemented in MATLAB in the clustering quantification (CQ) program
developed by the authors. This program uses the MATLAB dendrogram function
to compute and display a hierarchy of clusters that depends on the clustering distance.
The information about the hierarchy is then used to compute the intrinsic clustering
distance dI that characterizes the distance between points in clusters. This distance
characterizes the nanoscale structure of any clustering in the data.

We can also generate a hierarchy for simulated random data. The simulated data
are typically much less clustered than our biological data and consequently d̃I for
random data is larger than dI for the biological data. In both cases, the amount of
clustering is strongly dependent on the number of particles in the image. For ran-
domly generated data, we provide a simple formula for estimating d̃I as a function of
the number of particles. To obtain a more intuitive and useful description of the clus-
tering, we introduce the clustering ratio ρI that is the ratio of the intrinsic distance
for simulated random data divided by the intrinsic distance for the experimental data.
Importantly, ρI is a dimensionless number that tells us how much more clustered the
biological data are in comparison with simulated random data.

Because there are a finite number of points in the image, the clusters only change at
a finite number of values di which are all of the distances between pairs of points. The
dendrogram displays this information. A minor complication is that for very small
values of d , the dendrogram function considers all points as clusters. Because of
the biological applications, we are only interested in nontrivial clusters that contain
at least two points. For a set of data points, the CQ program returns a plot of the
number of clusters as a function of the clustering distance d , a plot of the hierarchical
clustering display by a dendrogram, and at the intrinsic clustering distance dI , a plot
of the clusters enclosed by their convex hulls and information on number of clusters,
number of points in clusters, and other details of the clustering. The CQ program is
available at http://stmc.health.unm.edu/.
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Fig. 1 Cartoon of FcεRI
primed with IgE. Image taken
from Gould and Sutton (2008)

We begin our discussion in Sect. 2 by defining the distance functions needed for
clustering analysis, then we give an overview of hierarchical clustering and dendro-
grams. An example is presented to illustrate these concepts.

In Sect. 3 we introduce a function C(d) that gives the number of clusters as a
function of the clustering distance d . The intrinsic clustering distance dI is then de-
fined to be the smallest distance for which there is a maximum number of clusters.
A similar concept was introduced in Cominetti et al. (2010). Clustering for simulated
random data is studied and used to normalize the clustering distance for the biologi-
cal data. The normalized clustering distance is a dimensionless number that we call
the intrinsic clustering ratio ρI and that we use to quantify the clustering in the data.

In Sect. 4, we use the intrinsic clustering distance and intrinsic clustering ratio
to analyze electron microscopy images from experiments in which mast cells were
exposed for 1 or 2 minutes to increasing concentrations of antigen targeting the IgE-
FcεRI receptor complexes,then membranes were quickly ripped off the cell, fixed and
labeled with gold particles targeting the FcεRI β subunit (see Fig. 1). As expected,
the intrinsic clustering distance dI decreases with increasing stimulation and conse-
quently the intrinsic clustering ratio increases with stimulation. Surprisingly, for the
clustering in the data set analyzed here, the clustering is proportional to the logarithm
of the stimulus concentration.

Section 5 contains a summary of what has been done. Appendix contains samples
of the images we used to analyze the biological data along with the analysis of the
clustering in the images.

1.1 The Biological Experiments and Data

The experiments focus on the RBL-2H3 mast cell line that expresses the high affinity
IgE receptor, FcεRI (Kinet 1999). This receptor binds IgE with high affinity and with
no apparent effect on receptor distribution or cellular activity. We know from previous
work that IgE-FcεRI receptor complexes are distributed nonrandomly (in small and
large clusters) over the cell surface in the absence of a stimulus (Oliver et al. 1988;
Seagrave et al. 1991; Wilson et al. 2001). Cells are activated by the addition of
multivalent antigen to physically crosslink the cell surface IgE-FcεRI receptor com-
plexes. The minimal signaling unit is a receptor dimer. In general, multivalent ligand
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Table 1 Biological data sets: column 1 is the amount s of stimulus in µg/ml added, column 2 is time t

in minutes at which the cells were fixed, columns labeled 1 through 11 give the number of particles in
each data set. A dash indicates experiments where there was a technical problem or the experiment was
not performed. The last column gives the names of the files containing the data

s t 1 2 3 4 5 6 7 8 9 10 11 Exp.

0.000 1 142 135 100 81 152 183 229 103 192 177 – 3362–3371

0.001 1 72 163 259 293 221 433 468 456 468 458 – 3404–3413

0.010 1 373 246 331 575 304 366 324 523 241 241 – 3394–3403

0.100 1 263 371 435 233 – 274 237 453 376 340 157 3383–3393

1.000 1 149 382 654 296 – 246 246 233 185 159 174 3372–3382

0.001 2 409 380 – – – – – – – – – 3360–3361

0.010 2 164 200 129 253 171 173 150 165 236 252 – 3350–3359

0.100 2 332 384 75 77 236 116 130 153 179 151 – 3340–3349

1.000 2 235 166 248 228 229 101 91 233 231 203 – 3330–3339

crosslinks multiple receptors. Multiple ligands and receptors can form chains, loops,
and other complex structures. The large stable clusters of crosslinked receptors that
form on antigen-activated cells, especially after prolonged incubation, are often called
aggregates.

The particular data set used to establish the usefulness of the intrinsic clustering
distance was previously analyzed using the Hopkins statistic and cluster counts in
Andrews et al. (2009). In this experiment, mast cells were primed by incubation with
IgE that recognizes dinitrophenol (anti-DNP-IgE) and were activated by incubation
with increasing amounts of DNPn-BSA, where n = 25, which refers to the number of
DNP molecules attached to a single molecule of bovine serum albumin. In this par-
ticular experiment, the activation period was short—only 1 or 2 minutes. The cells
were then rapidly cooled, their upper cell membrane ripped off onto a TEM grid, and
light fixative was added to limit further movement of membrane components. The
membrane sheets were labeled for 20 minutes using 5 nm gold particles functional-
ized to recognize the cytoplasmic tails of the FcεRI β subunit. Labeling conditions
were adjusted so that 70 to 90% of the receptors were labeled (Zhang et al. 2008;
Zhang 2010). Specimens were subsequently strongly fixed, processed for TEM and
digital images representing a 2266 nm by 2266 nm part of the membrane were col-
lected using an Hitachi H7500 electron microscope.

The image processing software in Zhang et al. (2006) was used to generate a list
of the coordinates of the centers of the gold particles with an accuracy of under one
nanometer. There are typically a few hundred particles in a data set. For reasonable es-
timates of the cell membrane area this is in agreement with papers (Faeder et al. 2003;
Xue et al. 2007) that give the total number of FcεRI receptors on the cell membrane
as between 2 × 105 and 4 × 105. We use the units nanometers (nm) to measure length
and minutes to measure time. The stimulus is measured in micrograms per milliliter
(µg/ml).

The number of particles in each image in the experimental data is displayed in
Table 1. The data are dose-response where the dose is the amount of stimulus s used

Author's personal copy



F.A. Espinoza et al.

and the response is the amount of clustering, which will be described later. Because
each micrograph is from a unique cell, each image represents a single experiment.
In general, 10 images were collected for each stimulus concentration. The number
of gold particles in each micrograph is shown in the columns labeled 1 through 11.
A dash entry means that there was a technical problem (out of focus or rips or folds
in the membrane) with the experiment. When discussing these data below, we will
omit the file labels as they are the same as in this table.

We need some quantitative information to analyze the biological data shown in
Table 1. As noted above, the TEM images are squares 2266 nm on each side. The
FcεRI are trans-membrane receptors that are approximately 10 nm in diameter (see
Fig. 1). The gold particles can have some variation in size and shape, but they are all
nearly spherical with a diameter of approximately 5 nm. The gold particles are coated
with a thin biofilm. Consequently, the distance between the centers of any two gold
particles should usually be greater than 5 nm. One complication is that the number
of particles per TEM image varies between 72 and 654, which strongly impacts the
clustering whatever the stimulus. Our new method of analysis will compensate for
this.

2 Mathematical Background

The biological data consist of M > 0 particles which will be modeled as points in the
Cartesian plane:

pj = (xj , yj ), 1 ≤ j ≤ M.

Clustering is defined in terms of two functions, the distance function and the linkage
function. The distance function computes the distance between points and the linkage
function computes the distance between clusters. Clustering results often vary based
on the choice of these functions. The distance between points is defined by

ϕj,k = ‖pj − pk‖ =
√

(xj − xk)2 + (yj − yk)2.

which is the Euclidean distance. The clusters depend on the choice of a clustering
distance d ≥ 0. Then, if two points satisfy ϕj,k ≤ d , they are in the same cluster.

Next, let A and B be two clusters containing points aα and bβ , then the distance
between two clusters is defined by:

ϕ(A,B) = min
α,β

ϕ(aα, bβ).

which is known as single-linkage merge criterion (Jain et al. 1999; Jain and Dubes
1988). If ϕ(A,B) ≤ d, then A and B are combined into a single cluster. These func-
tions were chosen because it is reasonable to assume that two IgE-FcεRI receptors in
the cell membrane are more likely to interact the physically closer they are to each
other.
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Fig. 2 Positions (a) and dendrogram (b) for 10 random points

2.1 Hierarchical Clustering and Dendrograms

Our new method for clustering analysis is based on the hierarchical clustering ap-
proach. The dendrogram function from MATLAB is used to compute and display
the hierarchy of clusters. Dendrograms are tree diagrams that are a graphical rep-
resentation of a hierarchical clustering of a data set. They are often used in com-
putational biology to illustrate the clustering of genes or samples. In our case, the
hierarchy is parameterized by the clustering distance d and the dendrogram displays
how the clusters change as d changes. For d sufficiently small, each cluster contains
only one point. As d increases, pairs of clusters are merged into larger clusters. For
sufficiently large d, there is only one cluster.

Because two IgE-FcεRI receptor complexes must dimerize to create a signal, we
are only interested in nontrivial clusters that contain more than one point. For small
d , there are only trivial clusters. For increasing d , the number of nontrivial clusters
increases until a maximum value is reached. For larger d, the number of nontrivial
clusters decreases until there is one large cluster left. The dendrogram function can
display dendrograms for any number of points, however, the dendrograms of data sets
with more than 30 points can be incomprehensible to read. In this situation, 30 nodes
will be used to group these points in the display of the dendrograms. More details can
be found in the CQ program.

To illustrate hierarchical clustering, an example of 10 random points is given in
Fig. 2(a) and its hierarchy of clusters visualized by a dendrogram is given in Fig. 2(b).
The vertical axis on the dendrogram plot gives the clustering distance d , while the
horizontal axis lists the individual points that are collected into clusters. For the data
shown in Fig. 2(b), if d < 50 nm, there are only trivial clusters, while for d > 1100 nm
all the points are in one large cluster.

To identify intermediate clusters in Fig. 2, consider a value of d between the small-
est distance between any two particles and the distance where there is only one large
cluster. If a horizontal line is drawn at height d , then the intersection of this line with
the vertical lines of the dendrogram plot gives all of the clusters determined by the
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clustering distance d . The horizontal line connecting two clusters lies at a height d

where two or more clusters merge into one. In Fig. 2, for d = 100 nm, there is one
nontrivial cluster consisting of the points {4,9}. For d = 200 nm, there are two clus-
ters, the previous and {7,10}. For d = 300 nm, there is cluster {4,9} and point {5}
joins cluster {7,10} to form cluster {5,7,10}.

3 The Analysis Tools

The goal of this section is to describe the concept of the intrinsic clustering dis-
tance dI that will characterize the nanoscale distance between particles that are in
clusters. This distance is computed by CQ, the clustering quantification program,
which computes the clusters in the data as a function of the clustering distance d ,
and then computes the function C(d) ≥ 1 that gives the number of nontrivial clusters
determined by the distance d . For very small values of d , every cluster given by the
dendrogram function contains one particle and is thus trivial. For our data, there
can only be one cluster for d > 2266

√
2 nm, because this is the length of the diagonal

(maximum length) of the membrane imaged. Typically, there is only one cluster for
d greater than a few hundred nanometers. We define the intrinsic clustering distance
dI to be the smallest value of d for which there is a maximum number of clusters,
that is, for all d , C(d) ≤ C(dI ) and if C(d) = C(dI ), then dI ≤ d .

To illustrate our ideas and use of the CQ program, we generated a modest example
with 100 random points in a region the same size as that in our biological data and
plotted these points in Fig. 3(a). Typically, the images of biological data contain sev-
eral hundred points, but some do contain fewer than 100 points. We then computed
C(d) and plotted the result in Fig. 3(b). The maximum of C(d) is at d = 134 nm, so
dI = 134 nm. Next, the clusters for d = 134 nm were computed, and then the MAT-
LAB function convexHull was used to compute the convex hulls of the clusters,
which were then plotted in Fig. 3(a).

The dendrogram in Fig. 3(c) reduces the 100 points to 30 nodes. Figure 3(d) shows
the Hopkins statistic (Zhang et al. 2006) which indicates a very small amount of
clustering within the randomly generated data as the bar graph has moved slightly to
the right of the expected curve for random data. The fact that dI is large indicates
the data are random. It is clear that a more quantitative assessment of the clustering
would really be helpful in assessing the clustering in data.

The function C(d) is noisy, as is indicated in Fig. 3(b) for random data and Figs.
10, 11, 12, 13, and 14 for biological data. We tried fitting parts of the C(d) curve
with some smooth simple functions, and then computing the maximum of the smooth
function. However, this made no significant improvement in our estimates, and thus
is not used in the CQ program.

For the biological data, the average number of particles in an images is 252.
The dendrogram function reduces this number of points to 30 nodes, as illustrated
in Fig. 3(c). This emphasizes the large scale structure of the clustering, so is only of
modest interest to the biologists. Consequently, we will emphasize dendrograms of
small subsets of our data, as is done in Sect. 4.2.

What we need to know is how much more clustering is in the biological data than
in the randomly generated data. Because the number of particles in a biological image
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Fig. 3 Simulated random data with 100 points: (a) clusters enclosed by their convex hulls for
dI = 134 nm; (b) number of clusters C(d) with a vertical line at dI ; (c) dendrogram of 100 points us-
ing 30 nodes; (d) Hopkins clustering test

is highly variable, we need to study the clustering in random data as a function of the
number of points in an image. This can then be used to normalize the intrinsic clus-
tering distance, producing a clustering ratio that we use to characterize the amount
of clustering in biological data. Note that because the biological data are highly vari-
able, we will need to compute averages over the data sets with the same stimulus to
obtain reasonable results.

3.1 Simulated Random Data

An important factor is that, for a fixed clustering distance d and a fixed region, the
number of clusters in simulated random data increases as the number of particles
M increases. To understand how this affects the biological data, using the function
rand from MATLAB, we simulated a uniform distribution of M random particles
100 times and then computed the average μ(dI ) and standard deviation σ(dI ) of the
intrinsic distances. These are tabulated in Table 2 for several values of M . An example
of one of the simulations is shown in Fig. 3.
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Table 2 The mean and standard
deviation of the intrinsic
distance dI for 100 simulations
using M particles

M μ(dI ) σ (dI )

100 135 18

200 98 9

300 80 7

400 69 5

800 49 3

Fig. 4 Nonlinear fit of the
simulated random data from
Table 2

To compare the intrinsic distance for biological data to that for simulated ran-
dom data, we will need the values of dI for many values of M other than those in
Table 2. These values are plotted in Fig. 4 and look like the plot of the reciprocal
of a polynomial. Consequently, we fit these values with a function d̃I (M) of the
form

d̃I (M) = A

1 + B MC
(1)

using the fminsearch function from MATLAB. This produces

d̃I (M) = 707.1970

1 + 0.3242M0.5582
(2)

that is also plotted in Fig. 4. The fit is excellent with a relative mean square error of
0.3%. Note that d̃I (M) very slowly goes to zero as M goes to infinity.

It is typical for the number of particles in the images to be analyzed to vary sub-
stantially. To compensate for this, we introduce the clustering ratio

ρI = d̃I

dI

(3)

which measures how much more the biological data clusters as compared to sim-
ulated random data for the same number of particles. It is the clustering ratio that
provides an intuitively reasonable measure of clustering. It is also reasonable to de-
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Table 3 The intrinsic distance for the biological data: column 1 is the amount of stimulus s added; column
2 is time t at which the cells were fixed and columns labeled 1 through 11 give the values of dI

s t 1 2 3 4 5 6 7 8 9 10 11

0.000 1 78 80 140 75 23 72 27 96 38 20 –

0.001 1 68 31 66 23 82 37 32 32 27 53 –

0.010 1 45 17 20 20 23 29 36 24 43 35 –

0.100 1 20 16 16 48 24 16 17 17 23 21

1.000 1 15 17 25 17 29 16 16 23 16 14

0.001 2 24 36 – – – – – – – – –

0.010 2 19 79 65 41 37 34 22 30 33 35 –

0.100 2 21 16 20 14 21 20 16 17 16 23 –

1.000 2 30 26 21 12 25 32 24 22 22 23 –

fine the clustering ratio as the reciprocal of ρI , that is, as dI /d̃I . Our choice makes
ρI increase with an increasing stimulus, and thus is more intuitive.

4 Analysis of Biological Data

For the biology, it is important to know when the FcεRI are interacting. These
molecules are about 10 nm in diameter. So, it is unlikely that particles that are 50 nm
apart are attached to receptors that will interact, while at 20 nm, it is far more likely
that the receptors are interacting. The clustering distances dI that are given in Table 3
indicates that it is more likely that the receptors interact as the stimulus increases.
At time t = 1 min, the trend is that dI decreases for increasing stimulus dose. At time
t = 2 min, data were not taken for zero stimulus as this would be similar to the data
at t = 1 min. For stimulus 0.001, only two data sets were taken. For t = 2 min, the
remaining data show some decrease with increasing stimulus. For all of the data, in
the t = 1 min case, the intrinsic distance varies from 140 nm down to 14 nm. By
t = 2 min, the variation is smaller, 79 nm down to 12 nm.

The intrinsic clustering ratio for the biological data ρI is shown in Table 4. As for
the clustering distance, the clustering ratio is noisy. However, there is a clear trend in
the t = 1 min for the clustering ratio to increase with stimulus, especially for the three
largest stimuli. For the t = 2 min, the clustering ratio for s = 0.100 is larger than for
weaker or stronger stimuli. The laboratory has also generated dynamic data for the
FcεRI receptor that indicates that, for the stronger stimuli, most of the clustering has
been completed before t = 1 min, which could possibly explain this apparent lack of
correlation between stimulus and clustering.

Because of the noise in the clustering ratio, we computed the average and standard
deviation of the clustering ratio of the data over all of the experiments with the same
stimulus, and give the results in Table 5. We first observe that, for the unstimulated
data, the clustering as measured by the ρI , is more than twice what is seen in sim-
ulated random data. Next, at t = 1 min, there is a clear trend for the clustering to
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Table 4 The clustering ratio: column 1 is the amount of stimulus added; column 2 is the time at which
the cells were fixed; and columns labeled 1 through 11 give the values of the clustering ratio ρI

s Time 1 2 3 4 5 6 7 8 9 10 11

µg/ml min ρI ρI ρI ρI ρI ρI ρI ρI ρI ρI ρI

0.000 1 1.47 1.47 0.96 1.98 4.84 1.42 3.39 1.39 2.62 5.18 –

0.001 1 2.30 3.47 1.31 3.52 1.13 1.80 2.00 2.03 2.37 1.22 –

0.010 1 1.60 5.20 3.82 2.89 3.46 2.50 2.14 2.52 2.08 2.55 –

0.100 1 4.27 4.51 4.16 1.89 – 3.49 5.62 3.83 4.21 3.27 5.22

1.000 1 7.49 4.18 2.16 4.74 – 3.05 5.52 5.67 4.41 6.81 7.46

0.001 2 2.86 1.98 – – – – – – – – –

0.010 2 5.65 1.24 1.85 2.13 2.84 3.08 5.09 3.57 2.73 2.49 –

0.100 2 3.63 4.43 7.67 10.83 4.29 6.31 7.48 6.53 6.44 4.85 –

1.000 2 3.01 4.11 4.19 7.64 3.66 4.20 5.87 4.12 4.14 4.22 –

Table 5 Stimulus s, time t ,
mean μ and standard deviation
σ of the clustering ratio ρI from
Table 4

s t μ(ρI ) σ (ρI )

0.000 1 2.47 1.51

0.001 1 2.12 0.85

0.010 1 2.87 1.04

0.100 1 4.07 1.04

1.000 1 5.15 1.79

0.001 2 2.42 0.62

0.010 2 3.07 1.38

0.100 2 6.25 2.12

1.000 2 4.52 1.31

increase as the stimulus increases. In fact, at t = 1 min, we see that increasing the
stimulus by a factor of 10 increases the clustering ratio by approximately 1. More
precisely

μ(ρI ) ≈ 1.03 log(s) + 5.09

At 2 min, the relationship between the stimulus is more complex but is larger for the
strongly stimulated cells than for the unstimulated. It is also important to note that
the standard deviation σ is quite large. This quantifies the amount of variation in the
data, which is quite large, but does not increase as fast as the mean μ. For example,
for 2 min with stimulus 0.100, μ is quite large, but so is the standard deviation. It
is possible that running more experiments would reduce the standard deviation and
produce values of μ in line with the t = 1 min data.
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Table 6 Column 1, stimulus s; column 2, time t ; columns 3–9, weighted averages of the data sets, col-
umn 3, intrinsic distance dI ; column 4, percentage of particles in clusters (ppc); column 5, total number of
particles (tnp); column 6, total number of clusters (tnc); column 7, maximum cluster size (mcs) using dI ;
For comparison with previously published results (Andrews et al. 2009), columns 8–9 use a fixed cluster
distance of 50 nm: column 8, percentage of particles in clusters (ppc); column 9, maximum cluster size
(mcs)

1 2 3 4 5 6 7 8 9

s t dI ppc tnp tnc mcs ppc mcs

0.000 1 57 72 149 40 8 65 10

0.001 1 41 73 329 93 11 75 14

0.010 1 28 72 352 91 10 81 16

0.100 1 21 71 314 77 11 87 34

1.000 1 20 68 272 82 9 92 33

0.001 2 30 76 395 97 9 86 15

0.010 2 39 70 189 49 10 71 12

0.100 2 19 68 183 55 10 90 36

1.000 2 23 70 197 48 11 89 57

4.1 Additional Analysis Using the CQ Program

The clustering analysis program CQ computes many quantities other than the intrin-
sic distance dI and clustering ratio ρI . For example, it computes: the total number of
clusters (tnc), the maximum cluster size (mcs), and the percentage of particles in clus-
ters (ppc). Since the particles per TEM image vary between 72 and 654 (see Table 1),
we present weighted averages of the these quantities in Table 6. The weighted aver-
age is computed as follows. Let ni , 1 ≤ i ≤ I be the number of points in the images
in a data set; here I = 10. Then set

N =
I∑

i=1

ni, wi = ni

N
,

If qi , 1 ≤ i ≤ I , are given data, then the weighted average of data is

Q =
I∑

i=1

wi qi.

Table 6 gives the weighted averages of several quantities related to the biological
data. We include some results using a fixed cluster distance of 50 nm for comparison
with the usual method of determining clusters using a fixed distance. For these data,
we see:

column 3: For t = 1 min, dI decreases with increasing stimulus; for t = 2 min, dI is
small and decreases a little.

column 4: The percentage of particles in clusters is essentially a constant, 70% for
all the data. This is because dI decreases with increasing stimulus.
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Fig. 5 Experiment 3368, stimulus s = 0.000 µg/ml, (a) positions and (b) dendrogram of the largest cluster
at the intrinsic distance dI = 27 nm

column 5: The total number of particles has substantial variation.
column 6: The total number of clusters has substantial variation, but is not strongly

dependent on the stimulus concentration.
column 7: The maximum cluster size in this data set is essentially a constant 10

particles.
column 8: Using a fixed cluster distance of 50 nm, the percentage of particles in

clusters for t = 1 min increases from about 65% to 92%. For t = 2 min and a strong
stimulus, the percentage of particles in clusters is about 80% to 90%.

column 9: Again, using a cluster distance of 50 nm, the mean cluster size shows a
strong increase with increasing stimulus.

Previous papers (Varma and Mayor 1998; Goswami et al. 2008) present experi-
mental evidence that receptor clustering may be independent of receptor concentra-
tion and stimulus. We note that the percentage of particles in clusters, total number
of clusters and maximum cluster size do not strongly depend on the stimulus; see
columns 4, 6, and 7 from Table 6, which is in agreement with these papers.

4.2 Fine Scale Cluster Structure

To study the nanoscale structure of the membrane, we introduce the notion of a dense
or compact cluster as a cluster determined using the distance dI . Previously, clusters
were determined by a fixed distance, for example, 43 nm in Andrews et al. (2009).
From Table 3, we see that dI is usually smaller than this distance, so the particles in
clusters are typically closer together than when 43 nm is used. When dI ≤ 20 nm, the
receptors must be nearly touching as they are about 10 nm in diameter.

To illustrate how compact clusters can be used to understand membrane organi-
zation, we have included Figs. 5, 6, 7, 8, and 9. Note that because we are looking at
a single image for each stimulus, the values of dI may not decrease with increasing
stimulus. For each value of the stimulus and for t = 1 min, we chose data from the
experiment with the largest number of points M (see Table 7) and then found the
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Fig. 6 Experiment 3410, stimulus s = 0.001 µg/ml, (a) positions and (b) dendrogram of the largest cluster
at the intrinsic distance dI = 32 nm

Fig. 7 Experiment 3397, stimulus s = 0.010 µg/ml, (a) positions and (b) dendrogram of the largest cluster
at the intrinsic distance dI = 20 nm

Fig. 8 Experiment 3390, stimulus s = 0.100 µg/ml, (a) positions and (b) dendrogram of the largest cluster
at the intrinsic distance dI = 17 nm
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Fig. 9 Experiment 3374, stimulus s = 1.000 µg/ml, (a) positions and (b) dendrogram of the largest cluster
at the intrinsic distance dI = 25 nm

Table 7 The stimulus s, the
intrinsic distance dI for the data
sets with the largest number of
particles M for each stimulus
and t = 1 min

s dI M File

0.000 27 229 3368

0.001 32 468 3410

0.010 20 575 3397

0.100 17 453 3390

1.000 25 654 3374

largest compact cluster and plotted the cluster and its dendrogram. For these data, dI

is small, between 17 nm and 32 nm so the clusters are compact. The gold particles
are drawn to scale, that is with 5 nm circles. Note that the sizes of the gold particles
may vary by as much as one nm.

The dendrograms are quite useful in understanding the clusters. For example, in
Fig. 5, we see that particles {1,2,3,4,5,6} are a compact group, particles {7,8,9}
form a less compact group, and these two groups are only about 25 nm apart. The
cluster in Fig. 6 has a similar structure.

What is really apparent is that there is very little special structure in these clusters.
This is probably due to the multivalent nature of the ligand. Currently, the laboratory
is generating data using ligands with small valency. Here, we expect to see special
cluster appearing, for example, linear chains of crosslinked receptors.

5 Discussion

It is well known that membrane proteins are distributed nonrandomly in the plasma
membranes of animal cells. Evidence for this heterogeneity has been used to sup-
port the existence of a variety of membrane subdomains, including lipid rafts, protein
islands and cytoskeletal corrals (Lingwood and Simons 2010; Oliver et al. 2004).
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It is also well known that protein distributions change when cells are stimulated.
In the case of the high affinity IgE receptor, FcεRI, of mast cells, the change in-
duced by the addition of multivalent antigen involves a reorganization of 5 nm gold
particles marking receptors from singlets and small clusters to larger clusters, ac-
companied by biochemical and physiological responses by the activated cells. This
ligand-driven redistribution of receptors has been observed by both scanning and
transmission electron microscopy (Seagrave et al. 1991; Oliver et al. 2004) and has
been confirmed using both the Hopkins and Ripley statistics (Zhang et al. 2006;
Andrews et al. 2009). However, until now there has not been a good quantitative
way to compare clustering between experimental conditions.

Here, we present a new method for clustering analysis based on the hierarchical
clustering approach. Using the intrinsic clustering distance dI , we introduce a di-
mensionless number, the intrinsic clustering ratio ρI , that compares the amount of
clustering of particles in a set of experimental images with the amount of clustering
in simulated random data that contain the same number of particles. It is important
that ρI is determined by an algorithm, and is independent of user input. Given a pat-
tern of spatial points, the quantitative clustering program CQ is used to provide the
intrinsic clustering distance dI that quantifies the density of the clustering in electron
microscopy images. The dendrograms of the clusters provide a detailed summary of
membrane receptor organization on the 10 nm scale and so should have important
applications in understanding the molecular organization of membranes.

We apply the analysis to an experiment in which mast cells were activated for one
or two minutes with increasing concentrations of multivalent antigen, then FcεRI re-
ceptors were tagged with gold nanoparticles and their distributions captured by elec-
tron microscopy and analyzed. Using ρI , our results confirm an increase in clustering
with increasing stimulation already inferred from visual inspection of micrographs
and from Hopkins and Ripley analysis. The analysis appears to be both robust and
sensitive. In support of robustness, the change in the clustering ratio with increasing
stimulation is readily detected even though the amount of clustering varies substan-
tially between images from ten different cells exposed to the same experimental con-
ditions. In support of sensitivity, the change in the clustering ratio with increasing
stimulation is detected even though the particles are significantly clustered before the
addition of stimulus. Remarkably, the clustering ratio is proportional to the logarithm
of the stimulus concentration for the experiments analyzed here. Further analysis will
determine if this is unique to the current data set.

The CQ program produces additional detailed information about the membrane
organization, including the number of clusters, the three largest clusters, the total
number, and percentage of particles in clusters. It also produces the following plots:
the total number of clusters as a function of the distance d, the total number of parti-
cles in clusters as a function of the distance d, the clusters enclosed by their convex
hulls, and the distribution of cluster sizes.
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reviewers for their many useful comments that greatly improved this presentation.
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Appendix: Largest Number of Particles Experiments

In Figs. 10–14, for each stimulus and t = 1 min, we chose the experiment with the
largest number of particles and display the TEM image in (a). We also show a plot
of the particle position with the clusters identified by CQ program enclosed by their
convex hull in (b). The Hopkin’s test is displayed in (c) and the function C(d) that
gives the number of nontrivial clusters as a function of the clustering distance d is
displayed in (d). In postscript version of this paper, the plots can be magnified for
better visibility.

Fig. 10 Experiment 3368, stimulus s = 0.000 µg/ml, time t = 1 min, number of particles M = 229,
(a) TEM image, (b) clusters enclosed by their convex hulls at the intrinsic distance dI = 27 nm, (c) Hop-
kins test, (d) number of clusters
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Fig. 11 Experiment 3410, stimulus s = 0.001 µg/ml, time t = 1 min, number of particles M = 468,
(a) TEM image (b) clusters enclosed by their convex hulls at the intrinsic distance dI = 32 nm, (c) Hop-
kins’s test, (d) number of clusters

Fig. 12 Experiment 3397, stimulus s = 0.010 µg/ml, time t = 1 min, number of particles M = 575,
(a) TEM image, (b) clusters enclosed by their convex hulls at the intrinsic distance dI = 20 nm, (c) Hop-
kins’s test, (d) number of clusters
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Fig. 12 (Continued)

Fig. 13 Experiment 3390, stimulus s = 0.100 µg/ml, time t = 1 min, number of particles M = 453,
(a) TEM image, (b) clusters enclosed by their convex hulls at the intrinsic distance dI = 17 nm, (c) Hop-
kins’s test, (d) number of clusters
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Fig. 14 Experiment 3374, stimulus s = 1.000 µg/ml, time t = 1 min, number of particles M = 654,
(a) TEM image, (b) clusters enclosed by their convex hulls at the intrinsic distance dI = 25 nm, (c) Hop-
kins’s test, (d) number of clusters
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