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Quantitative understanding of cell signaling: the importance of
membrane organization
Krishnan Radhakrishnan1, Ádám Halász2, Dion Vlachos3 and
Jeremy S Edwards4,5
Systems biology modeling of signal transduction pathways

traditionally employs ordinary differential equations,

deterministic models based on the assumptions of spatial

homogeneity. However, this can be a poor approximation for

certain aspects of signal transduction, especially its initial

steps: the cell membrane exhibits significant spatial

organization, with diffusion rates approximately two orders of

magnitude slower than those in the cytosol. Thus, to unravel the

complexities of signaling pathways, quantitative models must

consider spatial organization as an important feature of cell

signaling. Furthermore, spatial separation limits the number of

molecules that can physically interact, requiring stochastic

simulation methods that account for individual molecules.

Herein, we discuss the need for mathematical models and

experiments that appreciate the importance of spatial

organization in the membrane.
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Introduction
Cell signaling is an essential, ubiquitous process that

living systems use to respond to the environment. Cell

signaling underlies critical cellular decisions such as de-

velopment, cell growth and division, differentiation,

migration, apoptosis, and it essentially provides the
www.sciencedirect.com
coordination required for the functionality of multicellu-

lar organisms. Understanding cell signaling is critical due

to its importance in cellular fate decisions and because

malfunctions in cellular signaling are at the heart of many

diseases such as cancer, autoimmune disease and others.

To further the understanding of cellular signaling,

traditional biological reductionist research is now com-

plemented with a systems biology approach. It is the

focus of this opinion article to discuss the importance of

an often neglected aspect of cell signaling — the spatial

organization of the cell membrane.

Signal propagation is controlled in part by the spatial and

temporal organization of the proteins involved in the

subsequent protein–protein and protein–lipid inter-

actions. The challenge is to understand the mechanisms

that regulate the efficiency, specificity and duration of cell

signaling, and how interactions among proteins in the

signaling network alter signal strength and the nature of

the physiological response. These are all not simply

functions of the biochemical properties of the proteins

involved. For example, if two components of a signaling

pathway occupy separate and distinct regions of the cell

membrane, there will essentially be a block in the sig-

naling pathway. In contrast, if two proteins in the same

signaling pathway exist at very low concentrations, the

signal can still be transmitted effectively if the proteins

are co-clustered in the same microdomain on the cell

membrane. It is likely that the cell uses spatial organiz-

ation to control and regulate signaling. Therefore, the

spatial and temporal complexities of cell membranes

must be fully resolved in order to properly understand

cell signaling and its regulation. Furthermore, additional

features in the membrane such as signaling microdo-

mains, lipid rafts, cytoskeletal corrals and lipid shells,

must be addressed [1–6,7�].

Systems biology for signal transduction
Mathematical modeling of signaling pathways has

traditionally been divided into two types, deterministic
and stochastic (Figure 1). In reality, biochemical reacting

systems are stochastic; however, when the numbers of

molecules are large, the stochastic fluctuations are insig-

nificant relative to the absolute molecule number. This is

the justification for the deterministic approach used in the

vast majority of systems biology models. The well mixed

assumption is another simplification that is inherent to

many systems biology studies. Well-mixed models do not

consider spatial organization of the cells, tissues, organs,
Current Opinion in Biotechnology 2010, 21:677–682
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Figure 1

Classes of mathematical models for biochemical processes in cells and their applicability and assumptions. Deterministic systems: the underlying

biochemical processes within cells are stochastic transformations. However, a deterministic mathematical description may be applicable depending on

the number of molecules N of each molecular species in the volume (or area) of interest. This number must be large (N� 1) for a continuous and

deterministic approach to provide an accurate representation. Basically, the expected stochastic fluctuations of the molecule number (DN, the magnitude

of intrinsic fluctuations is on the order of N1/2) must be small relative to the absolute number for a deterministic description to be an acceptable assumption.

Spatially heterogeneous systems: the well-mixed assumption implies that there is no significant spatial heterogeneity in the system. If this is not true but

there are well-defined spatial regions that are homogeneous, then a compartment-based model may be used instead of a fully spatial model.
etc. Nonetheless, deterministic models continue to pro-

vide useful insight [8�,9]. On the other hand, given the

heterogeneous organization of biological systems, we

view the spatial organization as an important aspect of

cell biology to be included. Therefore, over the past

decade we have been developing systems biology simu-

lation tools that include realistic spatial organizations

[10,11��,12�,13,14��]. We have started with the plasma

membrane, given its central role in signal transduction,

and are extending our tools and approaches inward to the

cytosol [14��] and outward to the tissue level. This paper

focuses on systems biology tools for studying spatially

non-homogeneous systems and the needs for future

developments.

Spatial simulations. The majority of discrete, stochastic

simulations have been limited to well-mixed (also called

spatially uniform or homogeneous) systems [15–
21,22�,23,24]. The assumption of a well-mixed condition

may be justified in some biological systems, whereas for

other conditions spatial modeling may be necessary. The

introduction of powerful microscopy methods (Figure 2)

[25] has enabled the construction of spatially distributed
Current Opinion in Biotechnology 2010, 21:677–682
(nonuniform) models that can impact significantly our

understanding and control of biological systems at the

molecular level.

Recent studies have emphasized the necessity of stochas-

tic spatial, as opposed to well-mixed deterministic or

partial differential equation (PDE), models for accurate

quantitative analysis of biological systems; see

[17,26�,27��,28��,29–35] and reviews [27��,28��,36]. The

inclusion of a spatial description is of great importance in

biology [27��], and spatial modeling has traditionally been

performed with PDE methods. PDEs have been used to

study receptor–ligand dynamics [37�,38–46], intracellular

processes [47�,48], signaling processes in the plasma

membrane [49�,50] and other biological problems [51].

Furthermore, Fickian diffusion and Smoluchowski

models have been used to study diffusion aspects of

synaptic transmission [52,53]. An excellent software tool,

VCell, has been developed for PDE-based spatial simu-

lations [54��].

PDE-based approaches usually have difficulty capturing

the transients of bimolecular reactions, for example,
www.sciencedirect.com
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Figure 2

Membrane organization of a subset of signaling proteins in the FceRI

(high-affinity IgE receptor) cascade, based on immunogold labeling

experiments. This figure features new added complications that must be

addressed by systems biology.
receptor–receptor interactions. Two excellent examples

underscoring the limitations of PDEs are found in

[26�,55��]. These limitations arise because tracking the

transient evolution of bimolecular reactions with reac-

tants is a many-body problem [56–59], whereas most of

the PDE-based efforts are based on the Smoluchowski

[60,61] and Collins–Kimball [62] models which include

only two-particle interactions, and are valid in the diffu-

sion-limited regime [11��]. Our intent here is not to

review these efforts; rather, we point out that an exact

relation between the effective reaction rate constant and

diffusivity is difficult to obtain for a general two-dimen-

sional bimolecular reaction, especially if one is interested

in the transient behavior of the system.

Stochastic PDEs, such as the Langevin equation, are also

used to capture the effect of noise in spatiotemporal

dynamics [63��]. However, these approaches rely on the

idealized notion of white noise, with fluctuations on all

scales. This is unrealistic and may lead to difficulties when

the number of copies of molecules is small, as is often the

case with plasma membrane proteins. For a brief overview

of the types of continuum equations that have been used

for this purpose, see [63��] and references therein.
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Kinetic or dynamic Monte Carlo (MC) based spatial

modeling involves first-principles stochastic simulations

of the movement, collisions and chemical transformations

of individual molecules in a finite-sized volume or area. It

is an attractive alternative to PDE-based approaches for

modeling cell surface receptor dynamics, because its

computational implementation can explicitly consider

firstly the creation of a spatially non-random distribution

of proteins due to bimolecular reactions [26�], secondly

the spatial heterogeneity such as microdomains in the

plasma membrane [7�,64,65�,66,67��] and thirdly the

noise and correlations resulting from a small number of

copies of activated receptors. The major limitation of

Kinetic MC based approaches is that they are computa-

tionally demanding. Attempts at acceleration of spatial

algorithms have primarily focused on algorithmic aspects:

fast update and search methods. For example, the work of

Bortz et al. on the n-fold or continuous time MC (CTMC)

method [68] is a significant achievement in computational

speedup. However, improvements are needed for stiff

problems, to overcome the one event per iteration issue

and to reach large length scales.

Rationale for spatial stochastic modeling: application to the
FceRI and Formyl Peptide Receptor (FPR) systems. The rapidly

growing body of simulation studies has clearly demon-

strated that stochastic modeling is essential in spatially

well-mixed systems when the population size of one or

more key intermediates is small [22�,24]. Under such

conditions, large noise and significant departure of average

rates from deterministic predictions are encountered. How-

ever, as the population size increases the noise is reduced,

and for large systems deterministic behavior is recovered.

In the FceRI and FPR systems it is estimated that there are

50–200 receptors and 1–5 coated pits (diameter of 60–
80 nm) in each 1 mm2 of plasma membrane [25]. Such

small population sizes require a stochastic method [11��].

Many microscopic-scale biological systems, including sev-

eral spatial features in the FceRI and FPR system, have yet

to be evaluated by spatial stochastic models. Important

spatial features of membrane systems include: firstly the

necessary proximity of two receptors for dimerization to

occur (nonlinear chemical events can cause significant

spatial correlations and lead to pattern formation such as

clustering, even in the absence of direct attractive inter-

molecular forces [29,69�]) (Figure 3); secondly the possible

attractive interactions between receptors and membrane

microdomains that render Fickian diffusion structurally

incorrect [70]; thirdly the ‘directional’ or ‘uphill’ diffusion

of receptors toward pits; and fourthly the observed hop

diffusion of membrane proteins [67��,71,72,73�,74]. With

such spatial effects, the stochastic solution differs from the

deterministic solution even in the infinite, macroscopic

size limit. Thus, this situation is very different from

spatially homogeneous systems. Consequently, we pro-

pose that the spatial multi-resolution MC framework will
Current Opinion in Biotechnology 2010, 21:677–682
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Figure 3

Electron micrograph of a membrane sheet as prepared by Wilson et al. [75]. The figure shows colocalization of the formyl peptide receptor (FPR) (5 nm)

and FceRI (10 nm) within 1 min of simultaneous addition of their ligands. Abbreviations used: PLCg2 (Phospholipase C-g2), PLCg (Phospholipase C-g),

LAT (linker for activation of T cells), Syk (Spleen Tyrosine Kinase), Lyn (Yamaguchi sarcoma viral related oncogene homolog — a Src family tyrosine

kinase), Gab2 (Grb2 associated binding protein 2), PI3K (Phosphoinositide 3-Kinase).
provide a protein-level model that can provide much insight into
signal transduction.

Need for more detailed spatial models
focusing on the membrane
The fluid mosaic model portrays protein movement as

Brownian motion in a sea of lipids. Although this model is

the foundation of membrane biology, it has been beset by

two inconsistencies. The diffusion coefficients for both

proteins and lipids are 5–50 times smaller in the plasma

membrane than in artificial membranes and oligomers or

molecular complexes exhibit a much lower diffusion

coefficient (by a factor of 40) in the plasma membrane

than in artificial membranes. Further, direct observation

has revealed that proteins are not randomly distributed.

These discrepancies between the fluid mosaic model and

experimental findings are indicative of the necessity for

an improved model, and have led researchers on an almost

40-year journey to uncover the true nature of the plasma

membrane.

Associated with this lipid-based architecture arises a

landscape of complexity, ranging from the coalescence

of phospholipids into ‘lipid rafts’ to the hindering inter-

actions caused by the cytoskeleton. Thus this almost 40-

year journey has enlightened the membrane biology

community, and provides a new direction for systems
Current Opinion in Biotechnology 2010, 21:677–682
biology as a whole. What has been established is that the

plasma membrane is a highly compartmentalized surface,

which affects the diffusion of signaling proteins in the

membrane, and hence the initiation and activation of

signal transduction pathways. These developments high-

light a need for computational algorithms that take into

account the observed biological complexity occurring

within the cell membrane.
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