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MATLAB Clustering Classes

● Best with MATLAB version 2014 or later
● Toolboxes used (matlab.codetools.requiredFilesAndProducts):

  Control System

  Curve Fitting

  Image Processing

  Statistics and Machine Learning
● Common interface to sets of functions
● Scriptable
● Availability:

http://stmc.health.unm.edu/tools-and-data/
● See also SuperCluster.m which operates with a GUI

http://stmc.health.unm.edu/tools-and-data/


  

Definitions

classclass: encapsulation of shared functionality (methods) 
and data for performing some process (computer code)

fluorophore: fluorescent probe activated by light 
emission (blinking)

localization: true location of a probe (often inferred) over 
a time interval (super-resolution)

observation: observed location of a probe at some 
instant of time (super-resolution)



  

MATLAB Clustering Classes
● SimulateDomains.m [Statistics]

simulations of spatial domains (clusters) of fluorophore localizations that exhibit distributions of 
observations representing blinks

● Clustering.m [CurveFit, ImageProcess, Statistics]

 spatial clustering algorithms:

     hierarchal, DBSCAN [4 versions], Getis based, Voronoi based

 spatial clustering statistics:

     pairwise distance, Hopkin's, Ripley's, bivariate Ripley's, dendrogram

● SRcluster.m [ControlSystem, CurveFit, ImageProcess, Statistics]

a top-down clustering algorithm to collapse clusters of observations of blinking fluorophores into 
a single estimate of the true location of the fluorophore using a log-likelihood hypothesis test

● PairCorr.m [ImageProcess, Statistics]

pair auto- and cross-correlation curves and statistics

● ROITools.m

region of interest selection tools for an arbitrary number of colors

Many of these will work in 2D & 3D.  Includes a collection of various sample drivers.



  

Domain Simulation

● clusters of localizations (Gaussian distribution)

● observations corresponding to each localization

● clusters can be elongated (σ_x ≠ σ_y) and rotated

● a mix of elongated and non-elongated clusters possible

● polygonal domain boundary can be provided

● 3D



  

big circles: localization cluster centers
“points”: clusters of observations
   corresponding to localizations



  

Clustering
● Classification scheme such that objects in the 
same group or cluster are more similar to each 
other than to those outside.

● Similarity can be measured in many different 
ways, but a common one in biology is Euclidean 
distance separation.

● In this situation, the maximal distance between 
two points within a cluster (ε) is < the minimal 
distance between two points in different clusters.

● Typically, the user specifies the number of 
clusters or ε, although some algorithms purport 
to deduce the proper values.



  

Clustering Algorithms

● k-means (not in Clustering.m; kmeans in MATLAB)

   [number of clusters known]
● Hierarchal [standard]
● DBSCAN [density based]

   Daszykowski (with and w/o ε) [fast and stable]

   Kovesi

   Pehlke

   Tran
● Getis based (2D only) [densely structured data]
● Voronoi based [experimental]



  

k-means Clustering

k-means clustering aims to partition n observations into k 
clusters in which each observation belongs to the cluster 
with the nearest mean, serving as a prototype of the 
cluster.  This results in a partitioning of the data space 
into Voronoi cells.
(https://en.wikipedia.org/wiki/K-means_clustering)



  

Hierarchical Clustering
(MATLAB linkage function)

[stable on coordinate reordering]



  

DBSCAN (Density-Based Spatial 
Clustering of Applications with Noise)

A cluster satisfies two properties (https://en.wikipedia.org/wiki/DBSCAN):
● all points within a cluster are mutually density-connected (density-

reachable by a distance < ε from common intermediate points 
and the cluster has a sufficient number of points),

●  if a point is density-reachable from any point 
 of the cluster, it is part of the cluster as well.

Points are thus designated as core points,
density-reachable points and outliers.
Noise is not part of any cluster.

Martin Ester, Hans-Peter Kriegel and Jörg Sander and Xiaowei Xu, ``A Density-Based 
Algorithm for Discovering Clusters in Large Spatial Databases with Noise'', in 
Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining 
(KDD-96) edited by Evangelos Simoudis, Jiawei Han and Usama M. Fayyad, AAAI 
Press, 1996, 226--231 (ISBN:1-57735-004-9, DOI:10.1.1.71.1980).



  

DBSCAN implementations
(adjudged by speed and stability under coordinate reordering)

M. Daszykowski, B. Walczak and D. L. Massart, ``Looking for natural 
patterns in data. Part 1: Density-based approach'', Chemometrics and 
Intelligent Laboratory Systems, Volume 56, Issue 2, May 2001, 83—92.
[fast and stable under coordinate reordering]

Peter Kovesi, Centre for Exploration Targeting, The University of Western 
Australia, 2013.

Carolyn Pehlke, SpatioTemporal Modeling Center, University of New 
Mexico, 2013.

Thanh N. Tran, Klaudia Drab and Michal Daszykowski, ``Revised 
DBSCAN algorithm to cluster data with dense adjacent clusters'', 
Chemometrics and Intelligent Laboratory Systems, Volume 120, Issue 
92, January 2013, 92—96 (DOI: 10.1016/j.chemolab.2012.11.006).



  

Getis based Clustering 
(developed by Carolyn Pehlke)

Getis statistic:

        

x_j is the intensity of the jth point (n points total)
w_ij(d) is a symmetric weight matrix that is a function of the distance d     
           that i is separated from j

J. K. Ord and Arthur Getis, ``Local Spatial Autocorrelation Statistics: Distributional Issues and an 
Application'', Geographical Analysis, Volume 27, Number 4, October 1995, 286--306.

Michelle S. Itano, Matthew S. Graus, Carolyn Pehlke, Michael J. Wester, Ping Liu, Keith A. Lidke, 
Nancy L. Thompson, Ken Jacobson and Aaron K. Neumann, ``Super-resolution imaging of C-type 
lectin spatial rearrangement within the dendritic cell plasma membrane at fungal microbe contact 
sites'', Frontiers in Physics, section Membrane Physiology and Membrane Biophysics, Volume 2, 
Number 46, August 2014, 1—17 (DOI: 10.3389/fphy.2014.00046).

Gi(d )=
∑j≠i

w ij(d )x j

∑ j≠i
x j



  

Getis Heat Map



  

Getis based Clustering

● Getis statistic produces an intensity heat map 
yielding seed points

● Estimate local length scale of clustered 
structures via the first critical point in G vs r 
plots for each seed point

● r_crit acts as ε for DBSCAN style clustering
● Good for densely structured data



  

Voronoi based Clustering

A Voronoi diagram or tesselation is a partitioning of the 
plane into regions, each containing one seed point, such 
that each boundary edge segment is equidistant from the 
nearest seed points.

   Choose rank n polygons with
density > alpha*(density_average)
   (alpha = 2 is a typical choice).

Florian Levet, Eric Hosy, Adel Kechkar, Corey Butler, Anne Beghin, Daniel 
Choquet and Jean-Baptiste Sibarita, ``SR-Tesseler: a method to segment and 
quantify localization-based super-resolution microscopy data'', Nature Methods, 
Volume 12, Number 11, 2015, 1065—1071 (DOI:10.1038/NMETH.3579).



  

Florian Levet et al.



  

DBSCAN vs Voronoi



  

Example Clustering Driver

    XY = load('...');   % nm

    E = 30;               % nm

    minPts = 3;

    c = Clustering();

    algorithm = 'Hierarchal'; 

    [nC, C, centers, ptsI] = c.cluster(algorithm, XY, E, minPts);

    fprintf('number of clusters = %d\n', nC);

    results = c.clusterStats(XY, C, centers)

    clusterFig = c.plotClusters(XY, C, centers, ptsI, algorithm);

    showm(clusterFig);



  

Hopkins' Statistic

The Hopkins' statistic (H) tests for complete spatial randomness of a probe 
pattern by comparing nearest neighbor distances from random points and 
randomly chosen probes.  If the number of probes in the set S (an image) is n, 
choose m << n random sampling locations s_j and probes p_j, then compute
      U  = Σ(d^2(s_j, S), j = 1 .. m)
      W = Σ(d^2(p_j, S), j = 1 .. m)
where
      d(p_j, S) = min{ d(p_j, p_k) for all p_k in S }
and d(p_j, p_k) = || p_j - p_k || is the distance between p_j and p_k. The 
Hopkins' Statistic is defined as
      H = U / (U + W)
and will lie in the interval [0, 1].

For good results, H should be computed multiple times for a single image.
      H = 0    for uniformly distributed probes
      H = 1/2 for completely random probes
      H = 1    for completely clustered probes



  

Ripley's Statistics
Ripley's K analysis tests for clustering and co-clustering by comparing the average number of 
probes in a disk of radius r about each of the probes with the average density of probes over the 
region considered.

   K(r) = A/n^2 sum(sum(δ_ij, j = 1 ..n), i = 1 .. n)

where A is the area of the domain, n is the number of points, and
δ_ij = 1   if the distance d(i, j) < r, otherwise 0

This counts the number of points encircled by concentric rings centered on each point, 
normalized by the average density of the region.  This can be linearized as

   L(r) = sqrt(K(r) / π)

so that

   L(r) < r   points are less clustered than random
   L(r) = r   points are clustered as in a random distribution
   L(r) > r   points are more clustered than random

In a bivariate analysis (where two different sets of probes in the same region are considered), 
the L function acts as above except that now the cluster size refers to clusters of co-mingled 
points from the two sets.



  

Hopkins' and Ripley's Statistics

Jun Zhang, Karin Leiderman, Janet R. Pfeiffer, Bridget S. Wilson, 
Janet M. Oliver and Stanly L. Steinberg, ``Characterizing the 
Topography of Membrane Receptors and Signaling Molecules from 
Spatial Patterns Obtained using Nanometer-scale Electron-dense 
Probes and Electron Microscopy'', Micron, Volume 37, Issue 1, 
January 2006, 14—34 (DOI:10.1016/j.micron.2005.03.014).

Dendrograms (for estimating cluster ε):

Flor A. Espinoza, Janet M. Oliver, Bridget S. Wilson and Stanly L. 
Steinberg, ``Using Hierarchical Clustering and Dendrograms to 
Quantify the Clustering of Membrane Proteins'', Bulletin of 
Mathematical Biology, Volume 74, Issue 1, January 2012, 190—
211 (PMID: 21751075, PMCID: PMC3429354).



  



  

H-SET (Hierarchical Single Emitter 
hypothesis Test)

A top-down clustering algorithm to collapse clusters of 
observations of blinking fluorophores into a single 
estimate of the true location (localization) of the 
fluorophore using a log-likelihood hypothesis test.

Jia Lin, Michael J. Wester, Matthew S. Graus, Keith A. Lidke and Aaron K. 
Neumann, ``Nanoscopic cell wall architecture of an immunogenic ligand in 
Candida albicans during antifungal drug treatment'', Molecular Biology of the 
Cell, Volume 27, Number 6, March 15, 2016, 1002—1014 (DOI: 
10.1091/mbc.E15-06-0355, PMID: 26792838).



  

H-SET

● If observations are clustered directly, typically 
there is a peak at the localization precision.

● This is due to overcounting of the probes, where 
single localizations are being expressed by 
multiple observations.

● A more sophisticated collapsing algorithm 
(reversible-jump Markov Chain Monte Carlo 
[RJMCMC]) is being developed by Mohamad 
Fazel and Keith Lidke, which will avoid creating 
artificial small clusters.



  

H-SET



  

H-SET



  

3D simulation



  

SR Collapse Studies
of various parameters for two 
clusters of observations at 
varying separations



  

Pair Auto- and Cross-Correlation

g(r) and c(r) report the increased probability of finding a second localized signal a 
distance r away from a given localized signal in super-resolution images, computed via 
fast Fourier transforms of the images.

Auto-Correlation:

      g(r) = < ρ(R) ρ(R – r) > / ρ^2 →

Cross-Correlation:

      c(r) = < ρ1(R) ρ2(R – r) > / (ρ1 ρ2) →

where   ρ = < ρ(r) >,   ρ1 = < ρ1(r) >,   ρ2 = < ρ2(r) >, 
and the average is over all positions R in the image.

In this definition, g(r) = 1 represents a random distribution.  Often, it can be assumed 
that g(r) is symmetric to rotations, and so can be averaged over angles.



  

Pair Auto- and Cross-Correlation

Fitting the g/c(r) curve produces estimates of cluster and localization sizes and 
densities.  Able to combine results for multiple rectangular ROIs of various sizes.

Sarah L. Veatch, Benjamin B. Machta, Sarah A. Shelby, Ethan N. Chiang, David A. Holowka and Barbara A. 
Baird, ``Correlation Functions Quantify Super-Resolution Images and Estimate Apparent Clustering Due to 

Over-Counting'', PLoS ONE, Volume 7, Issue 2, February 2012, 1—13.

Prabuddha Sengupta, Tijana Jovanovic-Talisman, Dunja Skoko, Malte Renz,Sarah L. Veatch and  Jennifer 
Lippincott-Schwartz, ``Probing protein heterogeneity in the plasma membrane using PALM and pair 

correlation analysis'', Nature Methods, Volume 8, Number 11, November 2011, 969—975.



  

Multi-ROI Pair Cross-Correlation

(Farzin Farzam, Keith Lidke)



  

 Channel Alignment
NanoGrid with lamp transmission light

Adapted from Keith A. Lidke, University of New Mexico (BPS 2016)



  

Channel Alignment

Adapted from Keith A. Lidke, University of New Mexico (BPS 2016)
(MathWorks)

Local affine transform produces small residual errors
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